Acronym ...
Name s2x2s4x,
square-alternated sodip
Circumradius ...
Face vector 16, 32, 24, 8
Confer
uniform variant:
tes  
general polytopal classes:
isogonal  

This polychora is obtained by square alternation of sodip.

As mere alternation it comes out to be nothing but a tes variant. Accordingly it obviously well could be resized to all unit edge lengths again.


Incidence matrix according to Dynkin symbol

s2x2s4x

demi( . . . . ) | 16 | 1 1 1 1 | 1 1 1 2 1 | 1 1 2
----------------+----+---------+-----------+------
demi( . x . . ) |  2 | 8 * * * | 1 1 0 0 1 | 0 1 2
demi( . . . x ) |  2 | * 8 * * | 1 0 1 1 0 | 1 1 1
      s 2 s .   |  2 | * * 8 * | 0 1 0 2 0 | 1 0 2  q
sefa( . . s4x ) |  2 | * * * 8 | 0 0 1 1 1 | 1 1 1  w
----------------+----+---------+-----------+------
demi( . x . x ) |  4 | 2 2 0 0 | 4 * * * * | 0 1 1
      s2x2s .   |  4 | 2 0 2 0 | * 4 * * * | 0 0 2  x2q
      . . s4x   |  4 | 0 2 0 2 | * * 4 * * | 1 1 0  x2w
sefa( s 2 s4x ) |  4 | 0 1 2 1 | * * * 8 * | 1 0 1  xw&#q
sefa( . x2s4x ) |  4 | 2 0 0 2 | * * * * 4 | 0 1 1  x2w
----------------+----+---------+-----------+------
      s 2 s4x   |  8 | 0 4 4 4 | 0 0 2 4 0 | 2 * *  wx2xw&#q (recta)
      . x2s4x   |  8 | 4 4 0 4 | 2 0 2 0 2 | * 2 *  x2x2w (tall square prism)
sefa( s2x2s4x ) |  8 | 4 2 4 2 | 1 2 0 2 1 | * * 4  xx2xw&#q (trapez prism)

starting figure: x x x4x

© 2004-2024
top of page