Acronym | ... |
Name |
s2x2s4x, square-alternated sodip |
Circumradius | ... |
Face vector | 16, 32, 24, 8 |
Confer |
This polychora is obtained by square alternation of sodip.
As mere alternation it comes out to be nothing but a tes variant. Accordingly it obviously well could be resized to all unit edge lengths again.
Incidence matrix according to Dynkin symbol
s2x2s4x demi( . . . . ) | 16 | 1 1 1 1 | 1 1 1 2 1 | 1 1 2 ----------------+----+---------+-----------+------ demi( . x . . ) | 2 | 8 * * * | 1 1 0 0 1 | 0 1 2 demi( . . . x ) | 2 | * 8 * * | 1 0 1 1 0 | 1 1 1 s 2 s . | 2 | * * 8 * | 0 1 0 2 0 | 1 0 2 q sefa( . . s4x ) | 2 | * * * 8 | 0 0 1 1 1 | 1 1 1 w ----------------+----+---------+-----------+------ demi( . x . x ) | 4 | 2 2 0 0 | 4 * * * * | 0 1 1 s2x2s . | 4 | 2 0 2 0 | * 4 * * * | 0 0 2 x2q . . s4x | 4 | 0 2 0 2 | * * 4 * * | 1 1 0 x2w sefa( s 2 s4x ) | 4 | 0 1 2 1 | * * * 8 * | 1 0 1 xw&#q sefa( . x2s4x ) | 4 | 2 0 0 2 | * * * * 4 | 0 1 1 x2w ----------------+----+---------+-----------+------ s 2 s4x | 8 | 0 4 4 4 | 0 0 2 4 0 | 2 * * wx2xw&#q (recta) . x2s4x | 8 | 4 4 0 4 | 2 0 2 0 2 | * 2 * x2x2w (tall square prism) sefa( s2x2s4x ) | 8 | 4 2 4 2 | 1 2 0 2 1 | * * 4 xx2xw&#q (trapez prism) starting figure: x x x4x
© 2004-2024 | top of page |