Acronym | ... |
Name | reduced( ofx3/2oxx3xxx&xt by 4x {6/2} ) |
Circumradius | sqrt[8-3 sqrt(5)] = 1.136572 |
Face vector | 40, 102, 78, 20 |
Confer |
|
Note: "medial" section is f3/2x3x, which is a faceting of x3v3a, where a = v2 = 2x-f. In fact the "diagonals" of v3a have size x and the "diagonals" of x3v have size f. From this line set of edges and those inscriptions only those of size x and f are taken, then giving rise to faceting faces f . x (underneath the x . a), to f3/2x . (faceting of x3v . in turn), and . x3x (deep underneath . v3a – and thus directly underneath the opposite x3v).
Incidence matrix according to Dynkin symbol
reduced( ofx3/2oxx3xxx&#xt by 4x {6/2} ) → height(1,2) = sqrt[3+sqrt(5)]/4 = 0.572061 height(2,3) = sqrt[7+3 sqrt(5)]/4 = 0.925615 o..3/2o..3o.. | 4 * * | 3 6 0 0 0 0 0 | 3 3 3 6 0 0 0 0 0 | 1 1 3 3 0 0 .o.3/2.o.3.o. | * 24 * | 0 1 1 1 1 0 0 | 0 1 1 1 1 1 1 0 0 | 0 1 1 1 1 0 ..o3/2..o3..o | * * 12 | 0 0 0 0 2 2 2 | 0 2 0 0 0 2 2 2 2 | 0 1 2 0 2 1 -----------------------------+---------+---------------------+------------------------+------------ ... ... x.. | 2 0 0 | 6 * * * * * * | 2 0 0 2 0 0 0 0 0 | 1 0 1 2 0 0 oo.3/2oo.3oo.&#x | 1 1 0 | * 24 * * * * * | 0 1 1 1 0 0 0 0 0 | 0 1 1 1 0 0 ... .x. ... | 0 2 0 | * * 12 * * * * | 0 0 1 0 1 1 0 0 0 | 0 1 0 1 1 0 ... ... .x. | 0 2 0 | * * * 12 * * * | 0 0 0 1 1 0 1 0 0 | 0 0 1 1 1 0 .oo3/2.oo3.oo&#x | 0 1 1 | * * * * 24 * * | 0 1 0 0 0 1 1 0 0 | 0 1 1 0 1 0 reduced( ..x ... ... & ) | 0 0 2 | * * * * * 12 * | 0 1 0 0 0 1 0 1 1 | 0 1 1 0 1 1 ... ... ..x | 0 0 2 | * * * * * * 12 | 0 0 0 0 0 0 1 1 1 | 0 0 1 0 1 1 -----------------------------+---------+---------------------+------------------------+------------ ... o..3x.. | 3 0 0 | 3 0 0 0 0 0 0 | 4 * * * * * * * * | 1 0 0 1 0 0 ofx ... ...&#xt | 1 2 2 | 0 2 0 0 2 1 0 | * 12 * * * * * * * | 0 1 1 0 0 0 ... ox. ...&#x | 1 2 0 | 0 2 1 0 0 0 0 | * * 12 * * * * * * | 0 1 0 1 0 0 ... ... xx.&#x | 2 2 0 | 1 2 0 1 0 0 0 | * * * 12 * * * * * | 0 0 1 1 0 0 ... .x.3.x. | 0 6 0 | 0 0 3 3 0 0 0 | * * * * 4 * * * * | 0 0 0 1 1 0 ... .xx ...&#x | 0 2 2 | 0 0 1 0 2 1 0 | * * * * * 12 * * * | 0 1 0 0 1 0 ... ... .xx&#x | 0 2 2 | 0 0 0 1 2 0 1 | * * * * * * 12 * * | 0 0 1 0 1 0 ..x ... ..x | 0 0 4 | 0 0 0 0 0 2 2 | * * * * * * * 6 * | 0 0 1 0 0 1 ... ..x3..x | 0 0 6 | 0 0 0 0 0 3 3 | * * * * * * * * 4 | 0 0 0 0 1 1 -----------------------------+---------+---------------------+------------------------+------------ o..3/2o..3x.. ♦ 4 0 0 | 6 0 0 0 0 0 0 | 4 0 0 0 0 0 0 0 0 | 1 * * * * * reduced( ofx3/2oxx ...&#xt ) ♦ 1 6 3 | 0 6 3 0 6 3 0 | 0 3 3 0 0 3 0 0 0 | * 4 * * * * ofx ... xxx&#xt ♦ 2 4 4 | 1 4 0 2 4 2 2 | 0 2 0 2 0 0 2 1 0 | * * 6 * * * ... ox.3xx.&#x ♦ 3 6 0 | 3 6 3 3 0 0 0 | 1 0 3 3 1 0 0 0 0 | * * * 4 * * ... .xx3.xx&#x ♦ 0 6 6 | 0 0 3 3 6 3 3 | 0 0 0 0 1 3 3 0 1 | * * * * 4 * reduced( ..x3/2..x3..x ) ♦ 0 0 12 | 0 0 0 0 0 12 12 | 0 0 0 0 0 0 0 6 4 | * * * * * 1
© 2004-2024 | top of page |