Acronym ...
Name reduced( ofx3/2oxx3xxx&xt by 4x {6/2} )
Circumradius sqrt[8-3 sqrt(5)] = 1.136572
Face vector 40, 102, 78, 20
Confer
general polytopal classes:
trippescu familly   orbiform  

Note: "medial" section is f3/2x3x, which is a faceting of x3v3a, where a = v2 = 2x-f. In fact the "diagonals" of v3a have size x and the "diagonals" of x3v have size f. From this line set of edges and those inscriptions only those of size x and f are taken, then giving rise to faceting faces f . x (underneath the x . a), to f3/2x . (faceting of x3v . in turn), and . x3x (deep underneath . v3a – and thus directly underneath the opposite x3v).


Incidence matrix according to Dynkin symbol


reduced( ofx3/2oxx3xxx&#xt by 4x {6/2} )   → height(1,2) = sqrt[3+sqrt(5)]/4 = 0.572061
                                             height(2,3) = sqrt[7+3 sqrt(5)]/4 = 0.925615

         o..3/2o..3o..       | 4  *  * | 3  6  0  0  0  0  0 | 3  3  3  6 0  0  0 0 0 | 1 1 3 3 0 0
         .o.3/2.o.3.o.       | * 24  * | 0  1  1  1  1  0  0 | 0  1  1  1 1  1  1 0 0 | 0 1 1 1 1 0
         ..o3/2..o3..o       | *  * 12 | 0  0  0  0  2  2  2 | 0  2  0  0 0  2  2 2 2 | 0 1 2 0 2 1
-----------------------------+---------+---------------------+------------------------+------------
         ...   ... x..       | 2  0  0 | 6  *  *  *  *  *  * | 2  0  0  2 0  0  0 0 0 | 1 0 1 2 0 0
         oo.3/2oo.3oo.&#x    | 1  1  0 | * 24  *  *  *  *  * | 0  1  1  1 0  0  0 0 0 | 0 1 1 1 0 0
         ...   .x. ...       | 0  2  0 | *  * 12  *  *  *  * | 0  0  1  0 1  1  0 0 0 | 0 1 0 1 1 0
         ...   ... .x.       | 0  2  0 | *  *  * 12  *  *  * | 0  0  0  1 1  0  1 0 0 | 0 0 1 1 1 0
         .oo3/2.oo3.oo&#x    | 0  1  1 | *  *  *  * 24  *  * | 0  1  0  0 0  1  1 0 0 | 0 1 1 0 1 0
reduced( ..x   ... ...   & ) | 0  0  2 | *  *  *  *  * 12  * | 0  1  0  0 0  1  0 1 1 | 0 1 1 0 1 1
         ...   ... ..x       | 0  0  2 | *  *  *  *  *  * 12 | 0  0  0  0 0  0  1 1 1 | 0 0 1 0 1 1
-----------------------------+---------+---------------------+------------------------+------------
         ...   o..3x..       | 3  0  0 | 3  0  0  0  0  0  0 | 4  *  *  * *  *  * * * | 1 0 0 1 0 0
         ofx   ... ...&#xt   | 1  2  2 | 0  2  0  0  2  1  0 | * 12  *  * *  *  * * * | 0 1 1 0 0 0
         ...   ox. ...&#x    | 1  2  0 | 0  2  1  0  0  0  0 | *  * 12  * *  *  * * * | 0 1 0 1 0 0
         ...   ... xx.&#x    | 2  2  0 | 1  2  0  1  0  0  0 | *  *  * 12 *  *  * * * | 0 0 1 1 0 0
         ...   .x.3.x.       | 0  6  0 | 0  0  3  3  0  0  0 | *  *  *  * 4  *  * * * | 0 0 0 1 1 0
         ...   .xx ...&#x    | 0  2  2 | 0  0  1  0  2  1  0 | *  *  *  * * 12  * * * | 0 1 0 0 1 0
         ...   ... .xx&#x    | 0  2  2 | 0  0  0  1  2  0  1 | *  *  *  * *  * 12 * * | 0 0 1 0 1 0
         ..x   ... ..x       | 0  0  4 | 0  0  0  0  0  2  2 | *  *  *  * *  *  * 6 * | 0 0 1 0 0 1
         ...   ..x3..x       | 0  0  6 | 0  0  0  0  0  3  3 | *  *  *  * *  *  * * 4 | 0 0 0 0 1 1
-----------------------------+---------+---------------------+------------------------+------------
         o..3/2o..3x..        4  0  0 | 6  0  0  0  0  0  0 | 4  0  0  0 0  0  0 0 0 | 1 * * * * *
reduced( ofx3/2oxx ...&#xt )  1  6  3 | 0  6  3  0  6  3  0 | 0  3  3  0 0  3  0 0 0 | * 4 * * * *
         ofx   ... xxx&#xt    2  4  4 | 1  4  0  2  4  2  2 | 0  2  0  2 0  0  2 1 0 | * * 6 * * *
         ...   ox.3xx.&#x     3  6  0 | 3  6  3  3  0  0  0 | 1  0  3  3 1  0  0 0 0 | * * * 4 * *
         ...   .xx3.xx&#x     0  6  6 | 0  0  3  3  6  3  3 | 0  0  0  0 1  3  3 0 1 | * * * * 4 *
reduced( ..x3/2..x3..x     )  0  0 12 | 0  0  0  0  0 12 12 | 0  0  0  0 0  0  0 6 4 | * * * * * 1

© 2004-2025
top of page