Acronym | ... |
Name | rasishia + 2 2rasishi |
Circumradius | sqrt[(35+13 sqrt(5))/8] = 2.829949 |
Confer |
|
Either base of this Grünbaumian polyteron happens to be 3rasishi. Accordingly their vertices, edges and pentagrams are coincident by 3, the pentagons are coincident with the {10/2}, resp. the dids are coincident with the 2dids. And even the 3does look localy like 3-covers as well.
Incidence matrix according to Dynkin symbol
β2β5o5/2x5o both( . . . . . ) | 7200 | 4 2 2 | 2 2 4 1 3 4 | 1 1 2 2 6 2 | 2 1 3 --------------------+------+-----------------+-------------------------------+---------------------------+---------- both( . . . x . ) | 2 | 14400 * * | 1 1 1 0 0 1 | 1 0 1 1 2 1 | 1 1 2 β2β . . . | 2 | * 7200 * | 0 0 2 0 2 0 | 0 1 1 0 4 0 | 2 0 2 sefa( . β5o . . ) | 2 | * * 7200 | 0 0 0 1 1 2 | 0 1 0 2 2 1 | 2 1 1 --------------------+------+-----------------+-------------------------------+---------------------------+---------- both( . . o5/2x . ) | 5 | 5 0 0 | 2880 * * * * * | 1 0 0 1 1 0 | 1 1 1 both( . . . x5o ) | 5 | 5 0 0 | * 2880 * * * * | 1 0 1 0 0 1 | 0 1 2 β2β 2 x . | 4 | 2 2 0 | * * 7200 * * * | 0 0 1 0 2 0 | 1 0 2 . β5o . . | 5 | 0 0 5 | * * * 1440 * * | 0 1 0 2 0 0 | 2 1 0 {5/2} sefa( β2β5o . . ) | 3 | 0 2 1 | * * * * 7200 * | 0 1 0 0 2 0 | 2 0 1 sefa( . β5o5/2x . ) | 10 | 5 0 5 | * * * * * 2880 | 0 0 0 1 1 1 | 1 1 1 {10/2} --------------------+------+-----------------+-------------------------------+---------------------------+---------- both( . . o5/2x5o ) ♦ 30 | 60 0 0 | 12 12 0 0 0 0 | 240 * * * * * | 0 1 1 β2β5o . . ♦ 10 | 0 10 10 | 0 0 0 2 10 0 | * 720 * * * * | 2 0 0 β2β 2 x5o ♦ 10 | 10 5 0 | 0 2 5 0 0 0 | * * 1440 * * * | 0 0 2 . β5o5/2x . ♦ 60 | 60 0 60 | 12 0 0 12 0 12 | * * * 240 * * | 1 1 0 sefa( β2β5o5/2x . ) ♦ 15 | 10 10 5 | 1 0 5 0 5 1 | * * * * 2880 * | 1 0 1 sefa( . β5o5/2x5o ) ♦ 60 | 60 0 30 | 0 12 0 0 0 12 | * * * * * 240 | 0 1 1 --------------------+------+-----------------+-------------------------------+---------------------------+---------- β2β5o5/2x . ♦ 120 | 120 120 120 | 24 0 60 24 120 24 | 0 12 0 2 24 0 | 120 * * . β5o5/2x5o ♦ 3600 | 7200 0 3600 | 1440 1440 0 720 0 1440 | 120 0 0 120 0 120 | * 2 * sefa( β2β5o5/2x5o ) ♦ 90 | 120 60 30 | 12 24 60 0 30 12 | 1 0 12 0 12 1 | * * 240 starting figure: x x5o5/2x5o
oo5xx5/2xo5/2ox5/2*b&#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151 o.5o.5/2o.5/2o.5/2*b & | 7200 | 4 2 2 | 2 4 2 1 4 3 | 2 1 2 2 6 1 | 1 3 2 --------------------------+------+-----------------+-------------------------------+---------------------------+---------- .. x. .. .. & | 2 | 14400 * * | 1 1 1 0 1 0 | 1 1 1 1 2 0 | 1 2 1 .. .. x. .. & | 2 | * 7200 * | 0 2 0 1 0 1 | 1 0 2 0 2 1 | 1 1 2 oo5oo5/2oo5/2oo5/2*b&#x | 2 | * * 7200 | 0 0 0 0 2 2 | 0 0 0 1 4 1 | 0 2 2 --------------------------+------+-----------------+-------------------------------+---------------------------+---------- o.5x. .. .. & | 5 | 5 0 0 | 2880 * * * * * | 1 1 0 1 0 0 | 1 2 0 .. x.5/2x. .. & | 10 | 5 5 0 | * 2880 * * * * | 1 0 1 0 1 0 | 1 1 1 .. x. .. o.5/2*b & | 5 | 5 0 0 | * * 2880 * * * | 0 1 1 0 1 0 | 1 1 1 .. .. x.5/2o. & | 5 | 0 5 0 | * * * 1440 * * | 0 0 2 0 0 1 | 1 0 2 .. xx .. .. &#x | 4 | 2 0 2 | * * * * 7200 * | 0 0 0 1 2 0 | 0 2 1 .. .. xo .. &#x & | 3 | 0 1 2 | * * * * * 7200 | 0 0 0 0 2 1 | 0 1 2 --------------------------+------+-----------------+-------------------------------+---------------------------+---------- o.5x.5/2x. .. & ♦ 60 | 60 30 0 | 12 12 0 0 0 0 | 240 * * * * * | 1 1 0 o.5x. .. o.5/2*b & ♦ 30 | 60 0 0 | 12 0 12 0 0 0 | * 240 * * * * | 1 1 0 .. x.5/2x.5/2o.5/2*b & ♦ 60 | 60 60 0 | 0 12 12 12 0 0 | * * 240 * * * | 1 0 1 oo5xx .. .. &#x ♦ 10 | 10 0 5 | 2 0 0 0 5 0 | * * * 1440 * * | 0 2 0 .. xx5/2xo .. &#x & ♦ 15 | 10 5 10 | 0 1 1 0 5 5 | * * * * 2880 * | 0 1 1 .. .. xo5/2ox &#x ♦ 10 | 0 10 10 | 0 0 0 2 0 10 | * * * * * 720 | 0 0 2 --------------------------+------+-----------------+-------------------------------+---------------------------+---------- o.5x.5/2x.5/2o.5/2*b & ♦ 3600 | 7200 3600 0 | 1440 1440 1440 720 0 0 | 120 120 120 0 0 0 | 2 * * oo5xx5/2xo .. &#x & ♦ 90 | 120 30 60 | 24 12 12 0 60 30 | 1 1 0 12 12 0 | * 240 * .. xx5/2xo5/2ox5/2*b&#x ♦ 120 | 120 120 120 | 0 24 24 24 60 120 | 0 0 2 0 24 12 | * * 120
© 2004-2024 | top of page |