Acronym | ... |
Name | dastop + 2 2did |
Circumradius | 1/sqrt(2) = 0.707107 |
Confer |
|
Note that within 2did not only {10/2} is Grünbaumian, also its vertices, edges, and the 2 types of pentagrams were coincident as well.
Incidence matrix according to Dynkin symbol
xx5/2xo5/2ox5/2*a&#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151 o.5/2o.5/2o.5/2*a & | 120 | 2 2 2 | 2 1 1 2 3 | 1 3 1 -----------------------+-----+-------------+-----------------+-------- x. .. .. & | 2 | 120 * * | 1 1 0 1 0 | 1 2 0 .. x. .. & | 2 | * 120 * | 1 0 1 0 1 | 1 1 1 oo5/2oo5/2oo5/2*a& | 2 | * * 120 | 0 0 0 1 2 | 0 2 1 -----------------------+-----+-------------+-----------------+-------- x.5/2x. .. & | 10 | 5 5 0 | 24 * * * * | 1 1 0 x. .. o.5/2*a & | 5 | 5 0 0 | * 24 * * * | 1 1 0 .. x.5/2o. & | 5 | 0 5 0 | * * 24 * * | 1 0 1 xx .. .. &#x | 4 | 2 0 2 | * * * 60 * | 0 2 0 .. xo .. &#x & | 3 | 0 1 2 | * * * * 120 | 0 1 1 -----------------------+-----+-------------+-----------------+-------- x.5/2x.5/2o.5/2*a & ♦ 60 | 60 60 0 | 12 12 12 0 0 | 2 * * xx5/2xo .. &#x & ♦ 15 | 10 5 10 | 1 1 0 5 5 | * 24 * .. xo5/2ox &#x ♦ 10 | 0 10 10 | 0 0 2 0 10 | * * 12
β2β5o5/2x both( . . . . ) | 120 | 2 2 2 | 1 2 1 3 2 | 1 1 3 ------------------+-----+-------------+-----------------+-------- both( . . . x ) | 2 | 120 * * | 1 1 0 0 1 | 0 1 2 β2β . . | 2 | * 120 * | 0 1 0 2 0 | 1 0 2 sefa( . β5o . ) | 2 | * * 120 | 0 0 1 1 1 | 1 1 1 ------------------+-----+-------------+-----------------+-------- both( . . o5/2x ) | 5 | 5 0 0 | 24 * * * * | 0 1 1 {5/2} β2β . x | 4 | 2 2 0 | * 60 * * * | 0 0 2 . β5o . | 5 | 0 0 5 | * * 24 * * | 1 1 0 {5/2} sefa( β2β5o . ) | 3 | 0 2 1 | * * * 120 * | 1 0 1 sefa( . β5o5/2x ) | 10 | 5 0 5 | * * * * 24 | 0 1 1 {10/2} ------------------+-----+-------------+-----------------+-------- β2β5o . ♦ 10 | 0 10 10 | 0 0 2 10 0 | 12 * * . β5o5/2x ♦ 60 | 60 0 60 | 12 0 12 0 12 | * 2 * sefa( β2β5o5/2x ) ♦ 15 | 10 10 5 | 1 5 0 5 1 | * * 24 starting figure: x x5o5/2x
© 2004-2025 | top of page |