| Acronym | ... | 
| Name | dastop + 2 2did | 
| Circumradius | 1/sqrt(2) = 0.707107 | 
| Confer | 
	
  | 
Note that within 2did not only {10/2} is Grünbaumian, also its vertices, edges, and the 2 types of pentagrams were coincident as well.
Incidence matrix according to Dynkin symbol
xx5/2xo5/2ox5/2*a&#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151 o.5/2o.5/2o.5/2*a & | 120 | 2 2 2 | 2 1 1 2 3 | 1 3 1 -----------------------+-----+-------------+-----------------+-------- x. .. .. & | 2 | 120 * * | 1 1 0 1 0 | 1 2 0 .. x. .. & | 2 | * 120 * | 1 0 1 0 1 | 1 1 1 oo5/2oo5/2oo5/2*a& | 2 | * * 120 | 0 0 0 1 2 | 0 2 1 -----------------------+-----+-------------+-----------------+-------- x.5/2x. .. & | 10 | 5 5 0 | 24 * * * * | 1 1 0 x. .. o.5/2*a & | 5 | 5 0 0 | * 24 * * * | 1 1 0 .. x.5/2o. & | 5 | 0 5 0 | * * 24 * * | 1 0 1 xx .. .. &#x | 4 | 2 0 2 | * * * 60 * | 0 2 0 .. xo .. &#x & | 3 | 0 1 2 | * * * * 120 | 0 1 1 -----------------------+-----+-------------+-----------------+-------- x.5/2x.5/2o.5/2*a & ♦ 60 | 60 60 0 | 12 12 12 0 0 | 2 * * xx5/2xo .. &#x & ♦ 15 | 10 5 10 | 1 1 0 5 5 | * 24 * .. xo5/2ox &#x ♦ 10 | 0 10 10 | 0 0 2 0 10 | * * 12
β2β5o5/2x
both( . . .   . ) | 120 |   2   2   2 |  1  2  1   3  2 |  1 1  3
------------------+-----+-------------+-----------------+--------
both( . . .   x ) |   2 | 120   *   * |  1  1  0   0  1 |  0 1  2
      β2β .   .   |   2 |   * 120   * |  0  1  0   2  0 |  1 0  2
sefa( . β5o   . ) |   2 |   *   * 120 |  0  0  1   1  1 |  1 1  1
------------------+-----+-------------+-----------------+--------
both( . . o5/2x ) |   5 |   5   0   0 | 24  *  *   *  * |  0 1  1 {5/2}
      β2β .   x   |   4 |   2   2   0 |  * 60  *   *  * |  0 0  2
      . β5o   .   |   5 |   0   0   5 |  *  * 24   *  * |  1 1  0 {5/2}
sefa( β2β5o   . ) |   3 |   0   2   1 |  *  *  * 120  * |  1 0  1
sefa( . β5o5/2x ) |  10 |   5   0   5 |  *  *  *   * 24 |  0 1  1 {10/2}
------------------+-----+-------------+-----------------+--------
      β2β5o   .   ♦  10 |   0  10  10 |  0  0  2  10  0 | 12 *  *
      . β5o5/2x   ♦  60 |  60   0  60 | 12  0 12   0 12 |  * 2  *
sefa( β2β5o5/2x ) ♦  15 |  10  10   5 |  1  5  0   5  1 |  * * 24
starting figure: x x5o5/2x
© 2004-2025  | top of page |