Acronym quitch
Name quasitruncated cubic honeycomb
External
links
polytopewiki  

As abstract polytope quitch is isomorphic to tich, thereby replacing octagrams by octagons, and quith by tic.


Incidence matrix according to Dynkin symbol

x4/3x3o4o   (N → ∞)

.   . . . | 6N |  1   4 |  4  4 | 4 1
----------+----+--------+-------+----
x   . . . |  2 | 3N   * |  4  0 | 4 0
.   x . . |  2 |  * 12N |  1  2 | 2 1
----------+----+--------+-------+----
x4/3x . . |  8 |  4   4 | 3N  * | 2 0
.   x3o . |  3 |  0   3 |  * 8N | 1 1
----------+----+--------+-------+----
x4/3x3o .  24 | 12  24 |  6  8 | N *
.   x3o4o   6 |  0  12 |  0  8 | * N

x4/3x3o4/3o   (N → ∞)

.   . .   . | 6N |  1   4 |  4  4 | 4 1
------------+----+--------+-------+----
x   . .   . |  2 | 3N   * |  4  0 | 4 0
.   x .   . |  2 |  * 12N |  1  2 | 2 1
------------+----+--------+-------+----
x4/3x .   . |  8 |  4   4 | 3N  * | 2 0
.   x3o   . |  3 |  0   3 |  * 8N | 1 1
------------+----+--------+-------+----
x4/3x3o   .  24 | 12  24 |  6  8 | N *
.   x3o4/3o   6 |  0  12 |  0  8 | * N

o3x3o *b4/3x   (N → ∞)

. . .      . | 12N |   4  1 |  2  2  4 |  1 2 2
-------------+-----+--------+----------+-------
. x .      . |   2 | 24N  * |  1  1  1 |  1 1 1
. . .      x |   2 |   * 6N |  0  0  4 |  0 2 2
-------------+-----+--------+----------+-------
o3x .      . |   3 |   3  0 | 8N  *  * |  1 1 0
. x3o      . |   3 |   3  0 |  * 8N  * |  1 0 1
. x . *b4/3x |   8 |   4  4 |  *  * 6N |  0 1 1
-------------+-----+--------+----------+-------
o3x3o      .    6 |  12  0 |  4  4  0 | 2N * *
o3x . *b4/3x   24 |  24 12 |  8  0  6 |  * N *
. x3o *b4/3x   24 |  24 12 |  0  8  6 |  * * N

© 2004-2021
top of page