Acronym | tehat |
Name | hyperbolic tetrahexagonal tiling |
© | |
Circumradius | sqrt(-1) = 1 i |
Vertex figure | [(4,6)2] |
Confer |
|
External links |
There exists a regular modwrap of this tiling, obtained by identifying every 6th vertex on each hole. Then it allows a representation as infinite skew polyhedron, which happens to be a facial subset of the bitruncated cubical honeycomb.
Incidence matrix according to Dynkin symbol
o4x6o (N → ∞) . . . | 6N | 4 | 2 2 ------+----+-----+------ . x . | 2 | 12N | 1 1 ------+----+-----+------ o4x . | 4 | 4 | 3N * . x6o | 6 | 6 | * 2N
x6o6x (N → ∞) . . . | 6N | 2 2 | 1 2 1 ------+----+-------+------- x . . | 2 | 6N * | 1 1 0 . . x | 2 | * 6N | 0 1 1 ------+----+-------+------- x6o . | 6 | 6 0 | N * * x . x | 4 | 2 2 | * 3N * . o6x | 6 | 0 6 | * * N
x3x4o4*a (N → ∞) . . . | 12N | 2 2 | 2 1 1 ---------+-----+---------+--------- x . . | 2 | 12N * | 1 1 0 . x . | 2 | * 12N | 1 0 1 ---------+-----+---------+--------- x3x . | 6 | 3 3 | 4N * * x . o4*a | 4 | 4 0 | * 3N * . x4o | 4 | 0 4 | * * 3N
x3xØx3xØ*a . . . . | 12N | 1 1 1 1 | 1 1 1 1 -----------+-----+-------------+------------ x . . . | 2 | 6N * * * | 1 1 0 0 . x . . | 2 | * 6N * * | 1 0 1 0 . . x . | 2 | * * 6N * | 0 1 0 1 . . . x | 2 | * * * 6N | 0 0 1 1 -----------+-----+-------------+------------ x3x . . | 6 | 3 3 0 0 | 2N * * * x . x . | 4 | 2 0 2 0 | * 3N * * . x . x | 4 | 0 2 0 2 | * * 3N * . . x3x | 6 | 0 0 3 3 | * * * 2N
© 2004-2025 | top of page |