Acronym | ... |
Name | hyperbolic o3x4x3o8o tesselation |
Circumradius | sqrt[-1/sqrt(8)] = 0.594604 i |
Confer |
|
This hypercompact hyperbolic tesselation uses the order 8 triangle tiling (otrat) in the sense of an infinite bollohedron as one of its cell types. Further it uses x4x3o8o in the sense of an infinite bollochoron alike.
As these very bollochora are hemi-teral (have same curvature resp. intersect the hypersphere of infinity orthogonally) those could be replaced by mirror images of the remainder each. This transforms the hypercompact tetracomb back into a compact one, into lamina-trunc( o3x4x3o8o ) (contit).
Incidence matrix according to Dynkin symbol
o3x4x3o8o (N,M,K → ∞) . . . . . | 36NMK | 2 8 | 1 16 8 | 8 16 1 | 8 2 ----------+-------+--------------+-------------------+------------------+-------- . x . . . | 2 | 36NMK * | 1 8 0 | 8 8 0 | 8 1 . . x . . | 2 | * 144NMK | 0 2 2 | 1 4 1 | 2 2 ----------+-------+--------------+-------------------+------------------+-------- o3x . . . | 3 | 3 0 | 12NMK * * | 8 0 0 | 8 0 . x4x . . | 8 | 4 4 | * 72NMK * | 1 2 0 | 2 1 . . x3o . | 3 | 0 3 | * * 96NMK | 0 2 1 | 1 2 ----------+-------+--------------+-------------------+------------------+-------- o3x4x . . ♦ 24 | 24 12 | 8 6 0 | 12NMK * * | 2 0 . x4x3o . ♦ 24 | 12 24 | 0 6 8 | * 24NMK * | 1 1 . . x3o8o ♦ 3M | 0 12M | 0 0 8M | * * 12NK | 0 2 ----------+-------+--------------+-------------------+------------------+-------- o3x4x3o . ♦ 288 | 288 288 | 96 144 96 | 24 24 0 | NMK * . x4x3o8o ♦ 6MK | 3MK 24MK | 0 6MK 16MK | 0 2MK 2K | * 12N
© 2004-2025 | top of page |