Acronym giddip Name great-icosidodecahedron prism Cross sections ` ©` Circumradius sqrt[7-2 sqrt(5)]/2 = 0.794963 Colonel of regiment (is itself locally convex) Dihedral angles at {4} between stip and trip:   arccos(-sqrt[(5-2 sqrt(5))/15]) = 100.812317° at {5/2} between gid and stip:   90° at {3} between gid and trip:   90° Externallinks

As abstract polytope giddip is isomorphic to iddip, thereby replacing gid by id and stip by pip.

Incidence matrix according to Dynkin symbol

```x o3x5/2o

. . .   . | 60 |  1   4 |  4  2  2 |  2  2 1
----------+----+--------+----------+--------
x . .   . |  2 | 30   * |  4  0  0 |  2  2 0
. . x   . |  2 |  * 120 |  1  1  1 |  1  1 1
----------+----+--------+----------+--------
x . x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o3x   . |  3 |  0   3 |  * 40  * |  1  0 1
. . x5/2o |  5 |  0   5 |  *  * 24 |  0  1 1
----------+----+--------+----------+--------
x o3x   . ♦  6 |  3   6 |  3  2  0 | 20  * *
x . x5/2o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3x5/2o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o3x5/3o

. . .   . | 60 |  1   4 |  4  2  2 |  2  2 1
----------+----+--------+----------+--------
x . .   . |  2 | 30   * |  4  0  0 |  2  2 0
. . x   . |  2 |  * 120 |  1  1  1 |  1  1 1
----------+----+--------+----------+--------
x . x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o3x   . |  3 |  0   3 |  * 40  * |  1  0 1
. . x5/3o |  5 |  0   5 |  *  * 24 |  0  1 1
----------+----+--------+----------+--------
x o3x   . ♦  6 |  3   6 |  3  2  0 | 20  * *
x . x5/3o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3x5/3o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o3/2x5/2o

. .   .   . | 60 |  1   4 |  4  2  2 |  2  2 1
------------+----+--------+----------+--------
x .   .   . |  2 | 30   * |  4  0  0 |  2  2 0
. .   x   . |  2 |  * 120 |  1  1  1 |  1  1 1
------------+----+--------+----------+--------
x .   x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o3/2x   . |  3 |  0   3 |  * 40  * |  1  0 1
. .   x5/2o |  5 |  0   5 |  *  * 24 |  0  1 1
------------+----+--------+----------+--------
x o3/2x   . ♦  6 |  3   6 |  3  2  0 | 20  * *
x .   x5/2o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3/2x5/2o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o3/2x5/3o

. .   .   . | 60 |  1   4 |  4  2  2 |  2  2 1
------------+----+--------+----------+--------
x .   .   . |  2 | 30   * |  4  0  0 |  2  2 0
. .   x   . |  2 |  * 120 |  1  1  1 |  1  1 1
------------+----+--------+----------+--------
x .   x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o3/2x   . |  3 |  0   3 |  * 40  * |  1  0 1
. .   x5/3o |  5 |  0   5 |  *  * 24 |  0  1 1
------------+----+--------+----------+--------
x o3/2x   . ♦  6 |  3   6 |  3  2  0 | 20  * *
x .   x5/3o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o3/2x5/3o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```oo3xx5/2oo&#x   → height = 1
(gid || gid)

o.3o.5/2o.    | 30  * |  4  1  0 |  2  2  4  0  0 | 1  2  2 0
.o3.o5/2.o    |  * 30 |  0  1  4 |  0  0  4  2  2 | 0  2  2 1
--------------+-------+----------+----------------+----------
.. x.   ..    |  2  0 | 60  *  * |  1  1  1  0  0 | 1  1  1 0
oo3oo5/2oo&#x |  1  1 |  * 30  * |  0  0  4  0  0 | 0  2  2 0
.. .x   ..    |  0  2 |  *  * 60 |  0  0  1  1  1 | 0  1  1 1
--------------+-------+----------+----------------+----------
o.3x.   ..    |  3  0 |  3  0  0 | 20  *  *  *  * | 1  1  0 0
.. x.5/2o.    |  5  0 |  5  0  0 |  * 12  *  *  * | 1  0  1 0
.. xx   ..&#x |  2  2 |  1  2  1 |  *  * 60  *  * | 0  1  1 0
.o3.x   ..    |  0  3 |  0  0  3 |  *  *  * 20  * | 0  1  0 1
.. .x5/2.o    |  0  5 |  0  0  5 |  *  *  *  * 12 | 0  0  1 1
--------------+-------+----------+----------------+----------
o.3x.5/2o.    ♦ 30  0 | 60  0  0 | 20 12  0  0  0 | 1  *  * *
oo3xx   ..&#x ♦  3  3 |  3  3  3 |  1  0  3  1  0 | * 20  * *
.. xx5/2oo&#x ♦  5  5 |  5  5  5 |  0  1  5  0  1 | *  * 12 *
.o3.x5/2.o    ♦  0 30 |  0  0 60 |  0  0  0 20 12 | *  *  * 1
```