Acronym | giddip |
Name | great-icosidodecahedron prism |
Cross sections |
© |
Circumradius | sqrt[7-2 sqrt(5)]/2 = 0.794963 |
Colonel of regiment | (is itself locally convex – other uniform polychoral members: geihiddip gidhiddip) |
Dihedral angles | |
Face vector | 60, 150, 124, 34 |
Confer |
|
External links |
As abstract polytope giddip is isomorphic to iddip, thereby replacing gid by id and stip by pip.
Incidence matrix according to Dynkin symbol
x o3x5/2o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ----------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ----------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o3x . | 3 | 0 3 | * 40 * | 1 0 1 . . x5/2o | 5 | 0 5 | * * 24 | 0 1 1 ----------+----+--------+----------+-------- x o3x . ♦ 6 | 3 6 | 3 2 0 | 20 * * x . x5/2o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o3x5/2o ♦ 30 | 0 60 | 0 20 12 | * * 2
x o3x5/3o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ----------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ----------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o3x . | 3 | 0 3 | * 40 * | 1 0 1 . . x5/3o | 5 | 0 5 | * * 24 | 0 1 1 ----------+----+--------+----------+-------- x o3x . ♦ 6 | 3 6 | 3 2 0 | 20 * * x . x5/3o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o3x5/3o ♦ 30 | 0 60 | 0 20 12 | * * 2
x o3/2x5/2o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ------------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ------------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o3/2x . | 3 | 0 3 | * 40 * | 1 0 1 . . x5/2o | 5 | 0 5 | * * 24 | 0 1 1 ------------+----+--------+----------+-------- x o3/2x . ♦ 6 | 3 6 | 3 2 0 | 20 * * x . x5/2o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o3/2x5/2o ♦ 30 | 0 60 | 0 20 12 | * * 2
x o3/2x5/3o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ------------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ------------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o3/2x . | 3 | 0 3 | * 40 * | 1 0 1 . . x5/3o | 5 | 0 5 | * * 24 | 0 1 1 ------------+----+--------+----------+-------- x o3/2x . ♦ 6 | 3 6 | 3 2 0 | 20 * * x . x5/3o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o3/2x5/3o ♦ 30 | 0 60 | 0 20 12 | * * 2
oo3xx5/2oo&#x → height = 1
(gid || gid)
o.3o.5/2o. | 30 * | 4 1 0 | 2 2 4 0 0 | 1 2 2 0
.o3.o5/2.o | * 30 | 0 1 4 | 0 0 4 2 2 | 0 2 2 1
--------------+-------+----------+----------------+----------
.. x. .. | 2 0 | 60 * * | 1 1 1 0 0 | 1 1 1 0
oo3oo5/2oo&#x | 1 1 | * 30 * | 0 0 4 0 0 | 0 2 2 0
.. .x .. | 0 2 | * * 60 | 0 0 1 1 1 | 0 1 1 1
--------------+-------+----------+----------------+----------
o.3x. .. | 3 0 | 3 0 0 | 20 * * * * | 1 1 0 0
.. x.5/2o. | 5 0 | 5 0 0 | * 12 * * * | 1 0 1 0
.. xx ..&#x | 2 2 | 1 2 1 | * * 60 * * | 0 1 1 0
.o3.x .. | 0 3 | 0 0 3 | * * * 20 * | 0 1 0 1
.. .x5/2.o | 0 5 | 0 0 5 | * * * * 12 | 0 0 1 1
--------------+-------+----------+----------------+----------
o.3x.5/2o. ♦ 30 0 | 60 0 0 | 20 12 0 0 0 | 1 * * *
oo3xx ..&#x ♦ 3 3 | 3 3 3 | 1 0 3 1 0 | * 20 * *
.. xx5/2oo&#x ♦ 5 5 | 5 5 5 | 0 1 5 0 1 | * * 12 *
.o3.x5/2.o ♦ 0 30 | 0 0 60 | 0 0 0 20 12 | * * * 1
© 2004-2024 | top of page |