Acronym etrat Name elongated triangular tiling ` ©` Vertex figure [33,42] Externallinks

As abstract polytope etrat is isomrphic to retrat, thereby replacing prograde squares by retrograde ones.

Incidence matrix according to Dynkin symbol

```elong( x3o6o )   (N → ∞)

2N |  2  2 1 |  3 2
---+---------+-----
2 | 2N  * * |  2 0
2 |  * 2N * |  1 1
2 |  *  * N |  0 2
---+---------+-----
3 |  2  1 0 | 2N *
4 |  0  2 2 |  * N
```

```:xxoo:∞:ooxx:&##x   (N → ∞)   → heights alternatingly = sqrt(3)/2 = 0.866025 resp. = 1

o... ∞ o...     | N * * * | 2 1 0  0 0 0 0  2 | 2 0 0 0 2 1
.o.. ∞ .o..     | * N * * | 0 1 2  2 0 0 0  0 | 2 2 1 0 0 0
..o. ∞ ..o.     | * * N * | 0 0 0  2 2 1 0  0 | 0 1 2 2 0 0
...o ∞ ...o     | * * * N | 0 0 0  0 0 1 2  2 | 0 0 0 2 1 2
-----------------+---------+-------------------+------------
x...   ....     | 2 0 0 0 | N * *  * * * *  * | 1 0 0 0 1 0
oo.. ∞ oo.. &#x | 1 1 0 0 | * N *  * * * *  * | 2 0 0 0 0 0
.x..   ....     | 0 2 0 0 | * * N  * * * *  * | 1 1 0 0 0 0
.oo. ∞ .oo. &#x | 0 1 1 0 | * * * 2N * * *  * | 0 1 1 0 0 0
....   ..x.     | 0 0 2 0 | * * *  * N * *  * | 0 0 1 1 0 0
..oo ∞ ..oo &#x | 0 0 1 1 | * * *  * * N *  * | 0 0 0 2 0 0
....   ...x     | 0 0 0 2 | * * *  * * * N  * | 0 0 0 1 0 1
:o..o:∞:o..o:&#x | 1 0 0 1 | * * *  * * * * 2N | 0 0 0 0 1 1
-----------------+---------+-------------------+------------
xx..   .... &#x | 2 2 0 0 | 1 2 1  0 0 0 0  0 | N * * * * *
.xo.   .... &#x | 0 2 1 0 | 0 0 1  2 0 0 0  0 | * N * * * *
....   .ox. &#x | 0 1 2 0 | 0 0 0  2 1 0 0  0 | * * N * * *
....   ..xx &#x | 0 0 2 2 | 0 0 0  0 1 2 1  0 | * * * N * *
:x..o: :....:&#x | 2 0 0 1 | 1 0 0  0 0 0 0  2 | * * * * N *
:....: :o..x:&#x | 1 0 0 2 | 0 0 0  0 0 0 1  2 | * * * * * N
```