Acronym | diddip |
Name | dodecadodecahedron prism |
Cross sections |
© |
Circumradius | sqrt(5)/2 = 1.118034 |
Colonel of regiment | (is itself locally convex) |
Dihedral angles | |
Face vector | 60, 150, 108, 26 |
Confer |
|
External links |
As abstract polytope diddip is automorphic, thereby interchanging pentagons and pentagrams, respectively stip and pip.
Incidence matrix according to Dynkin symbol
x o5x5/2o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ----------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ----------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o5x . | 5 | 0 5 | * 24 * | 1 0 1 . . x5/2o | 5 | 0 5 | * * 24 | 0 1 1 ----------+----+--------+----------+-------- x o5x . ♦ 10 | 5 10 | 5 2 0 | 12 * * x . x5/2o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o5x5/2o ♦ 30 | 0 60 | 0 20 12 | * * 2
x o5x5/3o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ----------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ----------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o5x . | 5 | 0 5 | * 24 * | 1 0 1 . . x5/3o | 5 | 0 5 | * * 24 | 0 1 1 ----------+----+--------+----------+-------- x o5x . ♦ 10 | 5 10 | 5 2 0 | 12 * * x . x5/3o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o5x5/3o ♦ 30 | 0 60 | 0 20 12 | * * 2
x o5/4x5/2o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ------------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ------------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o5/4x . | 5 | 0 5 | * 24 * | 1 0 1 . . x5/2o | 5 | 0 5 | * * 24 | 0 1 1 ------------+----+--------+----------+-------- x o5/4x . ♦ 10 | 5 10 | 5 2 0 | 12 * * x . x5/2o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o5/4x5/2o ♦ 30 | 0 60 | 0 20 12 | * * 2
x o5/4x5/3o . . . . | 60 | 1 4 | 4 2 2 | 2 2 1 ------------+----+--------+----------+-------- x . . . | 2 | 30 * | 4 0 0 | 2 2 0 . . x . | 2 | * 120 | 1 1 1 | 1 1 1 ------------+----+--------+----------+-------- x . x . | 4 | 2 2 | 60 * * | 1 1 0 . o5/4x . | 5 | 0 5 | * 24 * | 1 0 1 . . x5/3o | 5 | 0 5 | * * 24 | 0 1 1 ------------+----+--------+----------+-------- x o5/4x . ♦ 10 | 5 10 | 5 2 0 | 12 * * x . x5/3o ♦ 10 | 5 10 | 5 0 2 | * 12 * . o5/4x5/3o ♦ 30 | 0 60 | 0 20 12 | * * 2
oo5xx5/2oo&#x → height = 1
(did || did)
o.5o.5/2o. | 30 * | 4 1 0 | 2 2 4 0 0 | 1 2 2 0
.o5.o5/2.o | * 30 | 0 1 4 | 0 0 4 2 2 | 0 2 2 1
--------------+-------+----------+----------------+----------
.. x. .. | 2 0 | 60 * * | 1 1 1 0 0 | 1 1 1 0
oo5oo5/2oo&#x | 1 1 | * 30 * | 0 0 4 0 0 | 0 2 2 0
.. .x .. | 0 2 | * * 60 | 0 0 1 1 1 | 0 1 1 1
--------------+-------+----------+----------------+----------
o.5x. .. | 5 0 | 5 0 0 | 12 * * * * | 1 1 0 0
.. x.5/2o. | 5 0 | 5 0 0 | * 12 * * * | 1 0 1 0
.. xx ..&#x | 2 2 | 1 2 1 | * * 60 * * | 0 1 1 0
.o5.x .. | 0 5 | 0 0 5 | * * * 12 * | 0 1 0 1
.. .x5/2.o | 0 5 | 0 0 5 | * * * * 12 | 0 0 1 1
--------------+-------+----------+----------------+----------
o.5x.5/2o. ♦ 30 0 | 60 0 0 | 20 12 0 0 0 | 1 * * *
oo5xx ..&#x ♦ 5 5 | 5 5 5 | 1 0 5 1 0 | * 12 * *
.. xx5/2oo&#x ♦ 5 5 | 5 5 5 | 0 1 5 0 1 | * * 12 *
.o5.x5/2.o ♦ 0 30 | 0 0 60 | 0 0 0 20 12 | * * * 1
© 2004-2024 | top of page |