Acronym diddip Name dodecadodecahedron prism Cross sections ` ©` Circumradius sqrt(5)/2 = 1.118034 Colonel of regiment (is itself locally convex) Dihedral angles at {4} between pip and stip:   arccos(-1/sqrt(5)) = 116.565051° at {5} between did and pip:   90° at {5} between did and stip:   90° Externallinks

As abstract polytope diddip is automorphic, thereby interchanging pentagons and pentagrams, respectively stip and pip.

Incidence matrix according to Dynkin symbol

```x o5x5/2o

. . .   . | 60 |  1   4 |  4  2  2 |  2  2 1
----------+----+--------+----------+--------
x . .   . |  2 | 30   * |  4  0  0 |  2  2 0
. . x   . |  2 |  * 120 |  1  1  1 |  1  1 1
----------+----+--------+----------+--------
x . x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o5x   . |  5 |  0   5 |  * 24  * |  1  0 1
. . x5/2o |  5 |  0   5 |  *  * 24 |  0  1 1
----------+----+--------+----------+--------
x o5x   . ♦ 10 |  5  10 |  5  2  0 | 12  * *
x . x5/2o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o5x5/2o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o5x5/3o

. . .   . | 60 |  1   4 |  4  2  2 |  2  2 1
----------+----+--------+----------+--------
x . .   . |  2 | 30   * |  4  0  0 |  2  2 0
. . x   . |  2 |  * 120 |  1  1  1 |  1  1 1
----------+----+--------+----------+--------
x . x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o5x   . |  5 |  0   5 |  * 24  * |  1  0 1
. . x5/3o |  5 |  0   5 |  *  * 24 |  0  1 1
----------+----+--------+----------+--------
x o5x   . ♦ 10 |  5  10 |  5  2  0 | 12  * *
x . x5/3o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o5x5/3o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o5/4x5/2o

. .   .   . | 60 |  1   4 |  4  2  2 |  2  2 1
------------+----+--------+----------+--------
x .   .   . |  2 | 30   * |  4  0  0 |  2  2 0
. .   x   . |  2 |  * 120 |  1  1  1 |  1  1 1
------------+----+--------+----------+--------
x .   x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o5/4x   . |  5 |  0   5 |  * 24  * |  1  0 1
. .   x5/2o |  5 |  0   5 |  *  * 24 |  0  1 1
------------+----+--------+----------+--------
x o5/4x   . ♦ 10 |  5  10 |  5  2  0 | 12  * *
x .   x5/2o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o5/4x5/2o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```x o5/4x5/3o

. .   .   . | 60 |  1   4 |  4  2  2 |  2  2 1
------------+----+--------+----------+--------
x .   .   . |  2 | 30   * |  4  0  0 |  2  2 0
. .   x   . |  2 |  * 120 |  1  1  1 |  1  1 1
------------+----+--------+----------+--------
x .   x   . |  4 |  2   2 | 60  *  * |  1  1 0
. o5/4x   . |  5 |  0   5 |  * 24  * |  1  0 1
. .   x5/3o |  5 |  0   5 |  *  * 24 |  0  1 1
------------+----+--------+----------+--------
x o5/4x   . ♦ 10 |  5  10 |  5  2  0 | 12  * *
x .   x5/3o ♦ 10 |  5  10 |  5  0  2 |  * 12 *
. o5/4x5/3o ♦ 30 |  0  60 |  0 20 12 |  *  * 2
```

```oo5xx5/2oo&#x   → height = 1
(did || did)

o.5o.5/2o.    | 30  * |  4  1  0 |  2  2  4  0  0 | 1  2  2 0
.o5.o5/2.o    |  * 30 |  0  1  4 |  0  0  4  2  2 | 0  2  2 1
--------------+-------+----------+----------------+----------
.. x.   ..    |  2  0 | 60  *  * |  1  1  1  0  0 | 1  1  1 0
oo5oo5/2oo&#x |  1  1 |  * 30  * |  0  0  4  0  0 | 0  2  2 0
.. .x   ..    |  0  2 |  *  * 60 |  0  0  1  1  1 | 0  1  1 1
--------------+-------+----------+----------------+----------
o.5x.   ..    |  5  0 |  5  0  0 | 12  *  *  *  * | 1  1  0 0
.. x.5/2o.    |  5  0 |  5  0  0 |  * 12  *  *  * | 1  0  1 0
.. xx   ..&#x |  2  2 |  1  2  1 |  *  * 60  *  * | 0  1  1 0
.o5.x   ..    |  0  5 |  0  0  5 |  *  *  * 12  * | 0  1  0 1
.. .x5/2.o    |  0  5 |  0  0  5 |  *  *  *  * 12 | 0  0  1 1
--------------+-------+----------+----------------+----------
o.5x.5/2o.    ♦ 30  0 | 60  0  0 | 20 12  0  0  0 | 1  *  * *
oo5xx   ..&#x ♦  5  5 |  5  5  5 |  1  0  5  1  0 | * 12  * *
.. xx5/2oo&#x ♦  5  5 |  5  5  5 |  0  1  5  0  1 | *  * 12 *
.o5.x5/2.o    ♦  0 30 |  0  0 60 |  0  0  0 20 12 | *  *  * 1
```