Acronym | cytloh |
Name | cyclotruncated heptapetic honeycomb |
Confer |
|
External links |
By virtue of an outer symmetry this is a non-quasiregular monotoxal hexacomb, that is all edges belong to the same equivalence class.
Incidence matrix according to Dynkin symbol
x3x3o3o3o3o3o3*a (N → ∞) . . . . . . . | 7N | 6 6 | 15 30 15 | 20 60 60 20 | 15 60 90 60 15 | 6 30 60 60 30 6 | 1 6 15 20 15 6 1 -----------------+-----+---------+-------------+-----------------+---------------------+-------------------+----------------- x . . . . . . | 2 | 21N * | 5 5 0 | 10 20 10 0 | 10 30 30 10 0 | 5 20 30 20 5 0 | 1 5 10 10 5 1 0 . x . . . . . | 2 | * 21N | 0 5 5 | 0 10 20 10 | 0 10 30 30 10 | 0 5 20 30 20 5 | 0 1 5 10 10 5 1 -----------------+-----+---------+-------------+-----------------+---------------------+-------------------+----------------- x . . . . . o3*a | 3 | 3 0 | 35N * * | 4 4 0 0 | 6 12 6 0 0 | 4 12 12 4 0 0 | 1 4 6 4 1 0 0 x3x . . . . . | 6 | 3 3 | * 35N * | 0 4 4 0 | 0 6 12 6 0 | 0 4 12 12 4 0 | 0 1 4 6 4 1 0 . x3o . . . . | 3 | 0 3 | * * 35N | 0 0 4 4 | 0 0 6 12 6 | 0 0 4 12 12 4 | 0 0 1 4 6 4 1 -----------------+-----+---------+-------------+-----------------+---------------------+-------------------+----------------- x . . . . o3o3*a ♦ 4 | 6 0 | 4 0 0 | 35N * * * | 3 3 0 0 0 | 3 6 3 0 0 0 | 1 3 3 1 0 0 0 x3x . . . . o3*a ♦ 12 | 12 6 | 4 4 0 | * 35N * * | 0 3 3 0 0 | 0 3 6 3 0 0 | 0 1 3 3 1 0 0 x3x3o . . . . ♦ 12 | 6 12 | 0 4 4 | * * 35N * | 0 0 3 3 0 | 0 0 3 6 3 0 | 0 0 1 3 3 1 0 . x3o3o . . . ♦ 4 | 0 6 | 0 0 4 | * * * 35N | 0 0 0 3 3 | 0 0 0 3 6 3 | 0 0 0 1 3 3 1 -----------------+-----+---------+-------------+-----------------+---------------------+-------------------+----------------- x . . . o3o3o3*a ♦ 5 | 10 0 | 10 0 0 | 5 0 0 0 | 21N * * * * | 2 2 0 0 0 0 | 1 2 1 0 0 0 0 x3x . . . o3o3*a ♦ 20 | 30 10 | 20 10 0 | 5 5 0 0 | * 21N * * * | 0 2 2 0 0 0 | 0 1 2 1 0 0 0 x3x3o . . . o3*a ♦ 30 | 30 30 | 10 20 10 | 0 5 5 0 | * * 21N * * | 0 0 2 2 0 0 | 0 0 1 2 1 0 0 x3x3o3o . . . ♦ 20 | 10 30 | 0 10 20 | 0 0 5 5 | * * * 21N * | 0 0 0 2 2 0 | 0 0 0 1 2 1 0 . x3o3o3o . . ♦ 5 | 0 10 | 0 0 10 | 0 0 0 5 | * * * * 21N | 0 0 0 0 2 2 | 0 0 0 0 1 2 1 -----------------+-----+---------+-------------+-----------------+---------------------+-------------------+----------------- x . . o3o3o3o3*a ♦ 6 | 15 0 | 20 0 0 | 15 0 0 0 | 6 0 0 0 0 | 7N * * * * * | 1 1 0 0 0 0 0 x3x . . o3o3o3*a ♦ 30 | 60 15 | 60 20 0 | 30 15 0 0 | 6 6 0 0 0 | * 7N * * * * | 0 1 1 0 0 0 0 x3x3o . . o3o3*a ♦ 60 | 90 60 | 60 60 20 | 15 30 15 0 | 0 6 6 0 0 | * * 7N * * * | 0 0 1 1 0 0 0 x3x3o3o . . o3*a ♦ 60 | 60 90 | 20 60 60 | 0 15 30 15 | 0 0 6 6 0 | * * * 7N * * | 0 0 0 1 1 0 0 x3x3o3o3o . . ♦ 30 | 15 60 | 0 20 60 | 0 0 15 30 | 0 0 0 6 6 | * * * * 7N * | 0 0 0 0 1 1 0 . x3o3o3o3o . ♦ 6 | 0 15 | 0 0 20 | 0 0 0 15 | 0 0 0 0 6 | * * * * * 7N | 0 0 0 0 0 1 1 -----------------+-----+---------+-------------+-----------------+---------------------+-------------------+----------------- x . o3o3o3o3o3*a ♦ 7 | 21 0 | 35 0 0 | 35 0 0 0 | 21 0 0 0 0 | 7 0 0 0 0 0 | N * * * * * * x3x . o3o3o3o3*a ♦ 42 | 105 21 | 140 35 0 | 105 35 0 0 | 42 21 0 0 0 | 7 7 0 0 0 0 | * N * * * * * x3x3o . o3o3o3*a ♦ 105 | 210 105 | 210 140 35 | 105 105 35 0 | 21 42 21 0 0 | 0 7 7 0 0 0 | * * N * * * * x3x3o3o . o3o3*a ♦ 140 | 210 210 | 140 210 140 | 35 105 105 35 | 0 21 42 21 0 | 0 0 7 7 0 0 | * * * N * * * x3x3o3o3o . o3*a ♦ 105 | 105 210 | 35 140 210 | 0 35 105 105 | 0 0 21 42 21 | 0 0 0 7 7 0 | * * * * N * * x3x3o3o3o3o . ♦ 42 | 21 105 | 0 35 140 | 0 0 35 105 | 0 0 0 21 42 | 0 0 0 0 7 7 | * * * * * N * . x3o3o3o3o3o ♦ 7 | 0 21 | 0 0 35 | 0 0 0 35 | 0 0 0 0 21 | 0 0 0 0 0 7 | * * * * * * N
or . . . . . . . | 7N | 12 | 30 30 | 120 40 | 90 120 30 | 120 60 12 | 20 30 12 2 -------------------+-----+-----+---------+---------+-------------+-------------+------------ x . . . . . . & | 2 | 42N | 5 5 | 30 10 | 30 40 10 | 50 25 5 | 10 15 6 1 -------------------+-----+-----+---------+---------+-------------+-------------+------------ x3x . . . . . | 6 | 6 | 35N * | 8 0 | 12 12 0 | 24 8 0 | 6 8 2 0 . x3o . . . . & | 3 | 3 | * 70N | 4 4 | 6 12 6 | 16 12 4 | 4 7 4 1 -------------------+-----+-----+---------+---------+-------------+-------------+------------ x3x3o . . . . & ♦ 12 | 18 | 4 4 | 70N * | 3 3 0 | 9 3 0 | 3 4 1 0 . x3o3o . . . & ♦ 4 | 6 | 0 4 | * 70N | 0 3 3 | 3 6 3 | 1 3 3 1 -------------------+-----+-----+---------+---------+-------------+-------------+------------ x3x3o . . . o3*a ♦ 30 | 60 | 20 20 | 10 0 | 21N * * | 4 0 0 | 2 2 0 0 x3x3o3o . . . & ♦ 20 | 40 | 10 20 | 5 5 | * 42N * | 2 2 0 | 1 2 1 0 . x3o3o3o . . & ♦ 5 | 10 | 0 10 | 0 5 | * * 42N | 0 2 2 | 0 1 2 1 -------------------+-----+-----+---------+---------+-------------+-------------+------------ x3x3o3o . . o3*a & ♦ 60 | 150 | 60 80 | 45 15 | 6 6 0 | 14N * * | 1 1 0 0 x3x3o3o3o . . & ♦ 30 | 75 | 20 60 | 15 30 | 0 6 6 | * 14N * | 0 1 1 0 . x3o3o3o3o . & ♦ 6 | 15 | 0 20 | 0 15 | 0 0 6 | * * 14N | 0 0 1 1 -------------------+-----+-----+---------+---------+-------------+-------------+------------ x3x3o3o . o3o3*a ♦ 140 | 420 | 210 280 | 210 70 | 42 42 0 | 14 0 0 | N * * * x3x3o3o3o . o3*a & ♦ 105 | 315 | 140 245 | 140 105 | 21 42 21 | 7 7 0 | * 2N * * x3x3o3o3o3o . & ♦ 42 | 126 | 35 140 | 35 105 | 0 21 42 | 0 7 7 | * * 2N * . x3o3o3o3o3o & ♦ 7 | 21 | 0 35 | 0 35 | 0 0 21 | 0 0 7 | * * * 2N
© 2004-2025 | top of page |