Acronym | cytaxh |
Name | cyclotruncated hexateric honeycomb |
Confer |
|
External links |
By virtue of an outer symmetry this is a non-quasiregular monotoxal pentacomb, that is all edges belong to the same equivalence class.
Incidence matrix according to Dynkin symbol
x3x3o3o3o3o3*a (N → ∞) . . . . . . | 6N | 5 5 | 20 10 10 | 30 30 10 10 | 20 30 20 5 5 | 5 10 10 5 1 1 ---------------+----+---------+-------------+-----------------+----------------+-------------- x . . . . . | 2 | 15N * | 4 4 0 | 6 12 6 0 | 4 12 12 4 0 | 1 4 6 4 1 0 . x . . . . | 2 | * 15N | 4 0 4 | 12 6 0 6 | 12 12 4 0 4 | 4 6 4 1 0 1 ---------------+----+---------+-------------+-----------------+----------------+-------------- x3x . . . . | 6 | 3 3 | 20N * * | 3 3 0 0 | 3 6 3 0 0 | 1 3 3 1 0 0 x . . . . o3*a | 3 | 3 0 | * 20N * | 0 3 3 0 | 0 3 6 3 0 | 0 1 3 3 1 0 . x3o . . . | 3 | 0 3 | * * 20N | 3 0 0 3 | 6 3 0 0 3 | 3 3 1 0 0 1 ---------------+----+---------+-------------+-----------------+----------------+-------------- x3x3o . . . ♦ 12 | 6 12 | 4 0 4 | 15N * * * | 2 2 0 0 0 | 1 2 1 0 0 0 x3x . . . o3*a ♦ 12 | 12 6 | 4 4 0 | * 15N * * | 0 2 2 0 0 | 0 1 2 1 0 0 x . . . o3o3*a ♦ 4 | 6 0 | 0 4 0 | * * 15N * | 0 0 2 2 0 | 0 0 1 2 1 0 . x3o3o . . ♦ 4 | 0 6 | 0 0 4 | * * * 15N | 2 0 0 0 2 | 2 1 0 0 0 1 ---------------+----+---------+-------------+-----------------+----------------+-------------- x3x3o3o . . ♦ 20 | 10 30 | 10 0 20 | 5 0 0 5 | 6N * * * * | 1 1 0 0 0 0 x3x3o . . o3*a ♦ 30 | 30 30 | 20 10 10 | 5 5 0 0 | * 6N * * * | 0 1 1 0 0 0 x3x . . o3o3*a ♦ 20 | 30 10 | 10 20 0 | 0 5 5 0 | * * 6N * * | 0 0 1 1 0 0 x . . o3o3o3*a ♦ 5 | 10 0 | 0 10 0 | 0 0 5 0 | * * * 6N * | 0 0 0 1 1 0 . x3o3o3o . ♦ 5 | 0 10 | 0 0 10 | 0 0 0 5 | * * * * 6N | 1 0 0 0 0 1 ---------------+----+---------+-------------+-----------------+----------------+-------------- x3x3o3o3o . ♦ 30 | 15 60 | 20 0 60 | 15 0 0 30 | 6 0 0 0 6 | N * * * * * x3x3o3o . o3*a ♦ 60 | 60 90 | 60 20 60 | 30 15 0 15 | 6 6 0 0 0 | * N * * * * x3x3o . o3o3*a ♦ 60 | 90 60 | 60 60 20 | 15 30 15 0 | 0 6 6 0 0 | * * N * * * x3x . o3o3o3*a ♦ 30 | 60 15 | 20 60 0 | 0 15 30 0 | 0 0 6 6 0 | * * * N * * x . o3o3o3o3*a ♦ 6 | 15 0 | 0 20 0 | 0 0 15 0 | 0 0 0 6 0 | * * * * N * . x3o3o3o3o ♦ 6 | 0 15 | 0 0 20 | 0 0 0 15 | 0 0 0 0 6 | * * * * * N
or . . . . . . | 3N | 10 | 20 20 | 60 20 | 40 30 10 | 10 20 2 ------------------+----+-----+---------+---------+----------+-------- x . . . . . & | 2 | 15N | 4 4 | 18 6 | 16 12 4 | 5 10 1 ------------------+----+-----+---------+---------+----------+-------- x3x . . . . | 6 | 6 | 10N * | 6 0 | 6 6 0 | 2 6 0 x . . . . o3*a & | 3 | 3 | * 20N | 3 3 | 6 3 3 | 3 4 1 ------------------+----+-----+---------+---------+----------+-------- x3x3o . . . & ♦ 12 | 18 | 4 4 | 15N * | 2 2 0 | 1 3 0 x . . . o3o3*a & ♦ 4 | 6 | 0 4 | * 15N | 2 0 2 | 2 1 1 ------------------+----+-----+---------+---------+----------+-------- x3x3o3o . . & ♦ 20 | 40 | 10 20 | 5 5 | 6N * * | 1 1 0 x3x3o . . o3*a ♦ 30 | 60 | 20 20 | 10 0 | * 3N * | 0 2 0 x . . o3o3o3*a & ♦ 5 | 10 | 0 10 | 0 5 | * * 6N | 1 0 1 ------------------+----+-----+---------+---------+----------+-------- x3x3o3o3o . & ♦ 30 | 75 | 20 60 | 15 30 | 6 0 6 | N * * x3x3o3o . o3*a & ♦ 60 | 150 | 60 80 | 45 15 | 6 6 0 | * N * x . o3o3o3o3*a & ♦ 6 | 15 | 0 20 | 0 15 | 0 0 6 | * * N
© 2004-2025 | top of page |