Acronym captatit
Name celliprismatotruncated tesseractic tetracomb,
great tomocubic-diprismatotesseractic tetracomb,
steriruncitruncated tesseractic tetracomb
External
links
wikipedia   polytopewiki

Incidence matrix according to Dynkin symbol

x4x3o3x4x   (N → ∞)

. . . . . | 192N |   1    2    2   1 |   2   2   1   1   2   2   1   2 |  1   2   2   1   2   1   1   2  1 | 1  1  2  1 1
----------+------+-------------------+---------------------------------+-----------------------------------+-------------
x . . . . |    2 | 96N    *    *   * |   2   2   1   0   0   0   0   0 |  1   2   2   1   2   0   0   0  0 | 1  1  2  1 0
. x . . . |    2 |   * 192N    *   * |   1   0   0   1   1   1   0   0 |  1   1   1   0   0   1   1   1  0 | 1  1  1  0 1
. . . x . |    2 |   *    * 192N   * |   0   1   0   0   1   0   1   1 |  0   1   0   1   1   1   0   1  1 | 1  0  1  1 1
. . . . x |    2 |   *    *    * 96N |   0   0   1   0   0   2   0   2 |  0   0   2   0   2   0   1   2  1 | 0  1  2  1 1
----------+------+-------------------+---------------------------------+-----------------------------------+-------------
x4x . . . |    8 |   4    4    0   0 | 48N   *   *   *   *   *   *   * |  1   1   1   0   0   0   0   0  0 | 1  1  1  0 0
x . . x . |    4 |   2    0    2   0 |   * 96N   *   *   *   *   *   * |  0   1   0   1   1   0   0   0  0 | 1  0  1  1 0
x . . . x |    4 |   2    0    0   2 |   *   * 48N   *   *   *   *   * |  0   0   2   0   2   0   0   0  0 | 0  1  2  1 0
. x3o . . |    3 |   0    3    0   0 |   *   *   * 64N   *   *   *   * |  1   0   0   0   0   1   1   0  0 | 1  1  0  0 1
. x . x . |    4 |   0    2    2   0 |   *   *   *   * 96N   *   *   * |  0   1   0   0   0   1   0   1  0 | 1  0  1  0 1
. x . . x |    4 |   0    2    0   2 |   *   *   *   *   * 96N   *   * |  0   0   1   0   0   0   1   1  0 | 0  1  1  0 1
. . o3x . |    3 |   0    0    3   0 |   *   *   *   *   *   * 64N   * |  0   0   0   1   0   1   0   0  1 | 1  0  0  1 1
. . . x4x |    8 |   0    0    4   4 |   *   *   *   *   *   *   * 48N |  0   0   0   0   1   0   0   1  1 | 0  0  1  1 1
----------+------+-------------------+---------------------------------+-----------------------------------+-------------
x4x3o . .    24 |  12   24    0   0 |   6   0   0   8   0   0   0   0 | 8N   *   *   *   *   *   *   *  * | 1  1  0  0 0
x4x . x .    16 |   8    8    8   0 |   2   4   0   0   4   0   0   0 |  * 24N   *   *   *   *   *   *  * | 1  0  1  0 0
x4x . . x    16 |   8    8    0   8 |   2   0   4   0   0   4   0   0 |  *   * 24N   *   *   *   *   *  * | 0  1  1  0 0
x . o3x .     6 |   3    0    6   0 |   0   3   0   0   0   0   2   0 |  *   *   * 32N   *   *   *   *  * | 1  0  0  1 0
x . . x4x    16 |   8    0    8   8 |   0   4   4   0   0   0   0   2 |  *   *   *   * 24N   *   *   *  * | 0  0  1  1 0
. x3o3x .    12 |   0   12   12   0 |   0   0   0   4   6   0   4   0 |  *   *   *   *   * 16N   *   *  * | 1  0  0  0 1
. x3o . x     6 |   0    6    0   3 |   0   0   0   2   0   3   0   0 |  *   *   *   *   *   * 32N   *  * | 0  1  0  0 1
. x . x4x    16 |   0    8    8   8 |   0   0   0   0   4   4   0   2 |  *   *   *   *   *   *   * 24N  * | 0  0  1  0 1
. . o3x4x    24 |   0    0   24  12 |   0   0   0   0   0   0   8   6 |  *   *   *   *   *   *   *   * 8N | 0  0  0  1 1
----------+------+-------------------+---------------------------------+-----------------------------------+-------------
x4x3o3x .   192 |  96  192  192   0 |  48  96   0  64  96   0  64   0 |  8  24   0  32   0  16   0   0  0 | N  *  *  * *
x4x3o . x    48 |  24   48    0  24 |  12   0  12  16   0  24   0   0 |  2   0   6   0   0   0   8   0  0 | * 4N  *  * *
x4x . x4x    64 |  32   32   32  32 |   8  16  16   0  16  16   0   8 |  0   4   4   0   4   0   0   4  0 | *  * 6N  * *
x . o3x4x    48 |  24    0   48  24 |   0  24  12   0   0   0  16  12 |  0   0   0   8   6   0   0   0  2 | *  *  * 4N *
. x3o3x4x   192 |   0  192  192  96 |   0   0   0  64  96  96  64  48 |  0   0   0   0   0  16  32  24  8 | *  *  *  * N
or
. . . . .    | 96N |   2    4 |   4   4   1   2   2 |  2   4   4   2  1 | 2  2  2
-------------+-----+----------+---------------------+-------------------+--------
x . . . .  & |   2 | 96N    * |   2   2   1   0   0 |  1   2   4   1  0 | 1  2  2
. x . . .  & |   2 |   * 192N |   1   1   0   1   1 |  1   2   1   1  1 | 2  1  1
-------------+-----+----------+---------------------+-------------------+--------
x4x . . .  & |   8 |   4    4 | 48N   *   *   *   * |  1   1   1   0  0 | 1  1  1
x . . x .  & |   4 |   2    2 |   * 96N   *   *   * |  0   1   1   1  0 | 1  1  1
x . . . x    |   4 |   4    0 |   *   * 24N   *   * |  0   0   4   0  0 | 0  2  2
. x3o . .  & |   3 |   0    3 |   *   *   * 64N   * |  1   0   0   1  1 | 2  1  0
. x . x .    |   4 |   0    4 |   *   *   *   * 48N |  0   2   0   0  1 | 2  0  1
-------------+-----+----------+---------------------+-------------------+--------
x4x3o . .  &   24 |  12   24 |   6   0   0   8   0 | 8N   *   *   *  * | 1  1  0
x4x . x .  &   16 |   8   16 |   2   4   0   0   4 |  * 24N   *   *  * | 1  0  1
x4x . . x  &   16 |  16    8 |   2   4   4   0   0 |  *   * 24N   *  * | 0  1  1
x . o3x .  &    6 |   3    6 |   0   3   0   2   0 |  *   *   * 32N  * | 1  1  0
. x3o3x .      12 |   0   24 |   0   0   0   8   6 |  *   *   *   * 8N | 2  0  0
-------------+-----+----------+---------------------+-------------------+--------
x4x3o3x .  &  192 |  96  384 |  48  96   0 128  96 |  8  24   0  32 16 | N  *  *
x4x3o . x  &   48 |  48   48 |  12  24  12  16   0 |  2   0   6   8  0 | * 4N  *
x4x . x4x      64 |  64   64 |  16  32  16   0  16 |  0   8   8   0  0 | *  * 3N

© 2004-2024
top of page