As abstract polytope qriddip is isomorphic to sriddip, thereby replacing retrograde pentagrams by prograde pentagons, resp. replacing qrid by srid and stip by pip.

Incidence matrix according to Dynkin symbol

```x x3o5/3x

. . .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
----------+-----+------------+----------------+-----------
x . .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. . .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
----------+-----+------------+----------------+-----------
x x .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x . .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. . o5/3x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
----------+-----+------------+----------------+-----------
x x3o   . ♦   6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x .   x ♦   8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x . o5/3x ♦  10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3o5/3x ♦  60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2
```

```x x3/2o5/2x

. .   .   . | 120 |  1   2   2 |  2  2  1  2  1 |  1  2  1 1
------------+-----+------------+----------------+-----------
x .   .   . |   2 | 60   *   * |  2  2  0  0  0 |  1  2  1 0
. x   .   . |   2 |  * 120   * |  1  0  1  1  0 |  1  1  0 1
. .   .   x |   2 |  *   * 120 |  0  1  0  1  1 |  0  1  1 1
------------+-----+------------+----------------+-----------
x x   .   . |   4 |  2   2   0 | 60  *  *  *  * |  1  1  0 0
x .   .   x |   4 |  2   0   2 |  * 60  *  *  * |  0  1  1 0
. x3/2o   . |   3 |  0   3   0 |  *  * 40  *  * |  1  0  0 1
. x   .   x |   4 |  0   2   2 |  *  *  * 60  * |  0  1  0 1
. .   o5/2x |   5 |  0   0   5 |  *  *  *  * 24 |  0  0  1 1
------------+-----+------------+----------------+-----------
x x3/2o   . ♦   6 |  3   6   0 |  3  0  2  0  0 | 20  *  * *
x x   .   x ♦   8 |  4   4   4 |  2  2  0  2  0 |  * 30  * *
x .   o5/2x ♦  10 |  5   0  10 |  0  5  0  0  2 |  *  * 12 *
. x3/2o5/2x ♦  60 |  0  60  60 |  0  0 20 30 12 |  *  *  * 2
```

```xx3oo5/3xx&#x   → height = 1
(qrid || qrid)

o.3o.5/3o.    | 60  * |  2  2  1  0  0 |  1  2  1  2  2  0  0  0 | 1  1  2  1 0
.o3.o5/3.o    |  * 60 |  0  0  1  2  2 |  0  0  0  2  2  1  2  1 | 0  1  2  1 1
--------------+-------+----------------+-------------------------+-------------
x. ..   ..    |  2  0 | 60  *  *  *  * |  1  1  0  1  0  0  0  0 | 1  1  1  0 0
.. ..   x.    |  2  0 |  * 60  *  *  * |  0  1  1  0  1  0  0  0 | 1  0  1  1 0
oo3oo5/3oo&#x |  1  1 |  *  * 60  *  * |  0  0  0  2  2  0  0  0 | 0  1  2  1 0
.x ..   ..    |  0  2 |  *  *  * 60  * |  0  0  0  1  0  1  1  0 | 0  1  1  0 1
.. ..   .x    |  0  2 |  *  *  *  * 60 |  0  0  0  0  1  0  1  1 | 0  0  1  1 1
--------------+-------+----------------+-------------------------+-------------
x.3o.   ..    |  3  0 |  3  0  0  0  0 | 20  *  *  *  *  *  *  * | 1  1  0  0 0
x. ..   x.    |  4  0 |  2  2  0  0  0 |  * 30  *  *  *  *  *  * | 1  0  1  0 0
.. o.5/3x.    |  5  0 |  0  5  0  0  0 |  *  * 12  *  *  *  *  * | 1  0  0  1 0
xx ..   ..&#x |  2  2 |  1  0  2  1  0 |  *  *  * 60  *  *  *  * | 0  1  1  0 0
.. ..   xx&#x |  2  2 |  0  1  2  0  1 |  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.o   ..    |  0  3 |  0  0  0  3  0 |  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x ..   .x    |  0  4 |  0  0  0  2  2 |  *  *  *  *  *  * 30  * | 0  0  1  0 1
.. .o5/3.x    |  0  5 |  0  0  0  0  5 |  *  *  *  *  *  *  * 12 | 0  0  0  1 1
--------------+-------+----------------+-------------------------+-------------
x.3o.5/3x.    ♦ 60  0 | 60 60  0  0  0 | 20 30 12  0  0  0  0  0 | 1  *  *  * *
xx3oo   ..&#x ♦  3  3 |  3  0  3  3  0 |  1  0  0  3  0  1  0  0 | * 20  *  * *
xx ..   xx&#x ♦  4  4 |  2  2  4  2  2 |  0  1  0  2  2  0  1  0 | *  * 30  * *
.. oo5/3xx&#x ♦  5  5 |  0  5  5  0  5 |  0  0  1  0  5  0  0  1 | *  *  * 12 *
.x3.o5/3.x    ♦  0 24 |  0  0  0 24 24 |  0  0  0  0  0 20 30 12 | *  *  *  * 1

```