Acronym gissiddip Name great-stellated-dodecahedron prism Cross sections ` ©` Circumradius sqrt[(11-3 sqrt(5))/8] = 0.732444 Colonel of regiment (is itself locally convex – no other uniform polychoral members) Externallinks

As abstract polytope gissiddip is isomorphic to dope, thereby replacing pentagrams by pentagons resp. replacing gissid by doe and stip by pip.

Incidence matrix according to Dynkin symbol

```x o3o5/2x

. . .   . | 40 |  1  3 |  3  3 |  3 1
----------+----+-------+-------+-----
x . .   . |  2 | 20  * |  3  0 |  3 0
. . .   x |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x . .   x |  4 |  2  2 | 30  * |  2 0
. . o5/2x |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x . o5/2x ♦ 10 |  5 10 |  5  2 | 12 *
. o3o5/2x ♦ 20 |  0 30 |  0 12 |  * 2
```

```x o3o5/3x

. . .   . | 40 |  1  3 |  3  3 |  3 1
----------+----+-------+-------+-----
x . .   . |  2 | 20  * |  3  0 |  3 0
. . .   x |  2 |  * 60 |  1  2 |  2 1
----------+----+-------+-------+-----
x . .   x |  4 |  2  2 | 30  * |  2 0
. . o5/3x |  5 |  0  5 |  * 24 |  1 1
----------+----+-------+-------+-----
x . o5/3x ♦ 10 |  5 10 |  5  2 | 12 *
. o3o5/3x ♦ 20 |  0 30 |  0 12 |  * 2
```

```x o3/2o5/2x

. .   .   . | 40 |  1  3 |  3  3 |  3 1
------------+----+-------+-------+-----
x .   .   . |  2 | 20  * |  3  0 |  3 0
. .   .   x |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x .   .   x |  4 |  2  2 | 30  * |  2 0
. .   o5/2x |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x .   o5/2x ♦ 10 |  5 10 |  5  2 | 12 *
. o3/2o5/2x ♦ 20 |  0 30 |  0 12 |  * 2
```

```x o3/2o5/3x

. .   .   . | 40 |  1  3 |  3  3 |  3 1
------------+----+-------+-------+-----
x .   .   . |  2 | 20  * |  3  0 |  3 0
. .   .   x |  2 |  * 60 |  1  2 |  2 1
------------+----+-------+-------+-----
x .   .   x |  4 |  2  2 | 30  * |  2 0
. .   o5/3x |  5 |  0  5 |  * 24 |  1 1
------------+----+-------+-------+-----
x .   o5/3x ♦ 10 |  5 10 |  5  2 | 12 *
. o3/2o5/3x ♦ 20 |  0 30 |  0 12 |  * 2
```

```oo3oo5/2xx&#x   → height = 1
(gissid || gissid)

o.3o.5/2o.    | 20  * |  3  1  0 |  3  3  0 | 1  3 0
.o3.o5/2.o    |  * 20 |  0  1  3 |  0  3  3 | 0  3 1
--------------+-------+----------+----------+-------
.. ..   x.    |  2  0 | 30  *  * |  2  1  0 | 1  2 0
oo3oo5/2oo&#x |  1  1 |  * 20  * |  0  3  0 | 0  3 0
.. ..   .x    |  0  2 |  *  * 30 |  0  1  2 | 0  2 1
--------------+-------+----------+----------+-------
.. o.5/2x.    |  5  0 |  5  0  0 | 12  *  * | 1  1 0
.. ..   xx&#x |  2  2 |  1  2  1 |  * 30  * | 0  2 0
.. .o5/2.x    |  0  5 |  0  0  5 |  *  * 12 | 0  1 1
--------------+-------+----------+----------+-------
o.3o.5/2x.    ♦ 20  0 | 30  0  0 | 12  0  0 | 1  * *
.. oo5/2xx&#x ♦  5  5 |  5  5  5 |  1  5  1 | * 12 *
.o3.o5/2.x    ♦  0 20 |  0  0 30 |  0  0 12 | *  * 1
```