Site Map Polytopes Dynkin Diagrams Vertex Figures, etc. Incidence Matrices Index

---- 5D ----



polytera with linear or bifurcated Dynkin diagrams   (up)

  o3o3o3o3o o3o3o3o4o o3o3o *b3o3o
quasiregular
x3o3o3o3o - hix
o3x3o3o3o - rix
o3o3x3o3o - dot
x3o3o3o4o - tac
o3x3o3o4o - rat
o3o3x3o4o - nit
o3o3o3x4o - rin
o3o3o3o4x - pent
x3o3o *b3o3o - hin
o3x3o *b3o3o - nit
o3o3o *b3x3o - rat
o3o3o *b3o3x - tac
other
Wythoffians
x3x3o3o3o - tix
x3o3x3o3o - sarx
x3o3o3x3o - spix
x3o3o3o3x - scad
o3x3x3o3o - bittix
o3x3o3x3o - sibrid

x3x3x3o3o - garx
x3x3o3x3o - pattix
x3x3o3o3x - cappix
x3o3x3x3o - pirx
x3o3x3o3x - card
o3x3x3x3o - gibrid

x3x3x3x3o - gippix
x3x3x3o3x - cograx
x3x3o3x3x - captid

x3x3x3x3x - gocad
x3x3o3o4o - tot
x3o3x3o4o - sart
x3o3o3x4o - spat
x3o3o3o4x - scant
o3x3x3o4o - bittit
o3x3o3x4o - sibrant
o3x3o3o4x - span
o3o3x3x4o - bittin
o3o3x3o4x - sirn
o3o3o3x4x - tan

x3x3x3o4o - gart
x3x3o3x4o - pattit
x3x3o3o4x - cappin
x3o3x3x4o - pirt
x3o3x3o4x - carnit
x3o3o3x4x - capt
o3x3x3x4o - gibrant
o3x3x3o4x - prin
o3x3o3x4x - pattin
o3o3x3x4x - girn

x3x3x3x4o - gippit
x3x3x3o4x - cogart
x3x3o3x4x - captint
x3o3x3x4x - cogrin
o3x3x3x4x - gippin

x3x3x3x4x - gacnet
x3x3o *b3o3o - thin
x3o3x *b3o3o - rin
x3o3o *b3x3o - sirhin
x3o3o *b3o3x - siphin
o3x3o *b3x3o - bittit
o3x3o *b3o3x - sart
o3o3o *b3x3x - tot

x3x3x *b3o3o - bittin
x3x3o *b3x3o - girhin
x3x3o *b3o3x - pithin
x3o3x *b3x3o - sibrant
x3o3x *b3o3x - spat
x3o3o *b3x3x - pirhin
o3x3o *b3x3x - gart

x3x3x *b3x3o - gibrant
x3x3x *b3o3x - pirt
x3x3o *b3x3x - giphin
x3o3x *b3x3x - pattit

x3x3x *b3x3x - gippit
(partial)
snubs and
holosnubs
s3s3s3s3s - snod (snix) *)

...
o3o3o3o4s - hin

x3o3o3o4s - siphin
o3x3o3o4s - sirhin
o3o3x3o4s - thin
o3o3o3x4s - rin

x3x3o3o4s - pirhin
x3o3x3o4s - pithin
x3o3o3x4s - spat
o3x3x3o4s - girhin
o3x3o3x4s - sibrant
o3o3x3x4s - bittin

x3x3x3o4s - giphin
x3x3o3x4s - pattit
x3o3x3x4s - pirt
o3x3x3x4s - gibrant
s3s3s3s4o - snippit (snahin) *)

x3x3x3x4s - gippit
s3s3s3s4x - pysnan *)
s3s3s3s4s - snan *)

...
s3s3s *b3s3s - snahin *)

...

*) those alternations cannot be made uniform, i.e. are isogonal only.



convex (multi)prisms   (up)

  ono o3o3o ono o3o4o ono o3o5o
of
quasiregulars
x3o x3o3o - tratet
x3o o3x3o - troct
x3o x3o4o - troct
x3o o3x4o - traco
x3o o3o4x - tracube
x3o x3o5o - trike
x3o o3x5o - trid
x3o o3o5x - tradoe
x4o x3o3o - squatet
x4o o3x3o - squoct
x4o x3o4o - squoct
x4o o3x4o - squaco
x4o o3o4x - pent
x4o x3o5o - squike
x4o o3x5o - squid
x4o o3o5x - squadoe
xno x3o3o - n,tet-dip
xno o3x3o - n,oct-dip
xno x3o4o - n,oct-dip
xno o3x4o - n,co-dip
xno o3o4x - n,cube-dip
xno x3o5o - n,ike-dip
xno o3x5o - n,id-dip
xno o3o5x - n,doe-dip
other
Wythoffians
x3x x3o3o - hatet
x3x o3x3o - hoct
x3o x3x3o - tratut
x3o x3o3x - traco

x3x x3x3o - hatut
x3x x3o3x - haco
x3o x3x3x - tratoe

x3x x3x3x - hatoe
x3x x3o4o - hoct
x3x o3x4o - haco
x3x o3o4x - hacube
x3o x3x4o - tratoe
x3o x3o4x - trasirco
x3o o3x4x - tratic

x3x x3x4o - hatoe
x3x x3o4x - hasirco
x3x o3x4x - hatic
x3o x3x4x - tragirco

x3x x3x4x - hagirco
x3x x3o5o - hike
x3x o3x5o - hid
x3x o3o5x - hadoe
x3o x3x5o - trati
x3o x3o5x - trasrid
x3o o3x5x - tratid

x3x x3x5o - hati
x3x x3o5x - hasrid
x3x o3x5x - hatid
x3o x3x5x - tragrid

x3x x3x5x - hagrid
x4x x3o3o - otet
x4x o3x3o - owoct
x4o x3x3o - squatut
x4o x3o3x - squaco

x4x x3x3o - otut
x4x x3o3x - oco
x4o x3x3x - squatoe

x4x x3x3x - otoe
x4x x3o4o - owoct
x4x o3x4o - oco
x4x o3o4x - ocube
x4o x3x4o - squatoe
x4o x3o4x - squasirco
x4o o3x4x - squatic

x4x x3x4o - otoe
x4x x3o4x - osirco
x4x o3x4x - otic
x4o x3x4x - squagirco

x4x x3x4x - ogirco
x4x x3o5o - oike
x4x o3x5o - oid
x4x o3o5x - odoe
x4o x3x5o - squati
x4o x3o5x - squasrid
x4o o3x5x - squatid

x4x x3x5o - oti
x4x x3o5x - osrid
x4x o3x5x - otid
x4o x3x5x - squagrid

x4x x3x5x - ogrid
xno x3x3o - n,tut-dip
xno x3o3x - n,co-dip

xno x3x3x - n,toe-dip
xno x3x4o - n,toe-dip
xno x3o4x - n,sirco-dip
xno o3x4x - n,tic-dip

xno x3x4x - n,girco-dip
xno x3x5o - n,ti-dip
xno x3o5x - n,srid-dip
xno o3x5x - n,tid-dip

xno x3x5x - n,grid-dip
  o o3o3o3o o o3o3o4o o o3o3o5o
of
quasiregulars
x x3o3o3o - penp
x o3x3o3o - rappip
x x3o3o4o - hexip
x o3x3o4o - icope
x o3o3x4o - rittip
x o3o3o4x - pent
x x3o3o5o - exip
x o3x3o5o - roxip
x o3o3x5o - rahipe
x o3o3o5x - hipe
other
Wythoffians
x x3x3o3o - tippip
x x3o3x3o - srippip
x x3o3o3x - spiddip
x o3x3x3o - decap

x x3x3x3o - grippip
x x3x3o3x - prippip

x x3x3x3x - gippiddip
x x3x3o4o - thexip
x x3o3x4o - ricope
x x3o3o4x - sidpithip
x o3x3x4o - tahp
x o3x3o4x - srittip
x o3o3x4x - tattip

x x3x3x4o - ticope
x x3x3o4x - prittip
x x3o3x4x - prohp
x o3x3x4x - grittip

x x3x3x4x - gidpithip
x x3x3o5o - texip
x x3o3x5o - srixip
x x3o3o5x - sidpixhip
x o3x3x5o - xhip
x o3x3o5x - srahip
x o3o3x5x - thipe

x x3x3x5o - grixip
x x3x3o5x - prahip
x x3o3x5x - prixip
x o3x3x5x - grahip

x x3x3x5x - gidpixhip
  o o3o4o3o o o3o3o *c3o o ono omo
of
quasiregulars
x x3o4o3o - icope
x o3x4o3o - ricope
x x3o3o *c3o - hexip
x o3x3o *c3o - icope
x x3o x3o - tratrip
x x3o x4o - tracube
x x3o xno - 3,n-dippip
x x4o xno - n,cube-dip
x xno xmo - n,m-dippip
other
Wythoffians
x x3x4o3o - ticope
x x3o4x3o - sricope
x x3o4o3x - spiccup
x o3x4x3o - contip

x x3x4x3o - gricope
x x3x4o3x - pricope

x x3x4x3x - gippiccup
x x3x3o *c3o - thexip
x x3o3x *c3o - rittip

x x3x3x *c3o - tahp
x x3o3x *c3x - ricope

x x3x3x *c3x - ticope
x x3o x3x - trahip
x x3x x3x - hahip
x x3o x4x - trop
x x3x x4o - hacube
x x3x x4x - haop
x x4o x4x - ocube
x x4x x4x - oop
  o o o3o3o o o o3o4o o o o3o5o
of
quasiregulars
x x x3o3o - squatet
x x o3x3o - squoct
x x x3o4o - squoct
x x o3x4o - squaco
x x o3o4x - pent
x x x3o5o - squike
x x o3x5o - squid
x x o3o5x - squadoe
other
Wythoffians
x x x3x3o - squatut
x x x3o3x - squaco

x x x3x3x - squatoe
x x x3x4o - squatoe
x x x3o4x - squasirco
x x o3x4x - squatic

x x x3x4x - squagirco
x x x3x5o - squati
x x x3o5x - squasrid
x x o3x5x - squatid

x x x3x5x - squagrid
  o o o ono o o o o o  
of
quasiregulars
x x x x3o - tracube
x x x x4o - pent
x x x xno - n,cube-dip
x x x x x - pent
 
other
Wythoffians
x x x x3x - hacube
x x x x4x - ocube
   


non-Wythoffian convex uniform polytera   (up)

snubs snub-prisms snub-duoprisms others
s2o3o3o4s - hin
s2x3o3o4s - rita †)
s2o3x3o4s - thexa †)
s2x3x3o4s - taha †)
x s3s4o3o    - sadip
x s3s3s4o    - sadip
x s3s3s *c3s - sadip
x3o s3s4s    - trasnic
x4o s3s4s    - squasnic

x3o s3s5s    - trasnid
x4o s3s5s    - squasnid
gappip

†)   The ones marked such still can be resized to all unit edges, but would be scaliform only.



some non-convex Wythoffian polytera   (up)

hixic

    3   3   3  3/2   
  o---o---o---o---o  

    3   3   3     
  o---o---o---o   
 3 \ / 3/2        
    o             
    3   3   3     
  o---o---o---o   
         3 \ / 3/2
            o     
o3o3o3o3/2o o3o3o3o3o3/2*c o3o3o3o3/2o3*c
x3o3o3o3/2o - hix (convex)
o3x3o3o3/2o - rix (convex)
o3o3x3o3/2o - dot (convex)
o3o3o3x3/2o - rix (convex)
o3o3o3o3/2x - hix (convex)

x3x3o3o3/2o - tix (convex)
x3o3x3o3/2o - sarx (convex)
x3o3o3x3/2o - spix (convex)
x3o3o3o3/2x - 2firx
o3x3x3o3/2o - bittix (convex)
o3x3o3x3/2o - sibrid (convex)
o3x3o3o3/2x - (contains "2firp")
o3o3x3x3/2o - bittix (convex)
o3o3x3o3/2x - (contains "2thah")
o3o3o3x3/2x - [Grünbaumian]

x3x3x3o3/2o - garx (convex)
x3x3o3x3/2o - pattix (convex)
x3x3o3o3/2x - (contains "2firp")
x3o3x3x3/2o - pirx (convex)
x3o3x3o3/2x - (contains "2thah")
x3o3o3x3/2x - [Grünbaumian]
o3x3x3x3/2o - gibrid (convex)
o3x3x3o3/2x - (contains "2thah")
o3x3o3x3/2x - [Grünbaumian]
o3o3x3x3/2x - [Grünbaumian]

x3x3x3x3/2o - gippix (convex)
x3x3x3o3/2x - (contains "2thah")
x3x3o3x3/2x - [Grünbaumian]
x3o3x3x3/2x - [Grünbaumian]
o3x3x3x3/2x - [Grünbaumian]

x3x3x3x3/2x - [Grünbaumian]
x3o3o3o3o3/2*c - 2hix (?)
   (contains "2pen" as verf)
o3x3o3o3o3/2*c - (contains "2pen")
o3o3x3o3o3/2*c - (contains "2tet")
o3o3o3x3o3/2*c - (contains "2tet")
o3o3o3o3x3/2*c - (contains "2tet")

x3x3o3o3o3/2*c - (contains "2pen")
x3o3x3o3o3/2*c - (contains "2tet")
x3o3o3x3o3/2*c - (contains "2tet")
x3o3o3o3x3/2*c - (contains "2tet")
o3x3x3o3o3/2*c - (contains "2tet")
o3x3o3x3o3/2*c - (contains "2tet")
o3x3o3o3x3/2*c - (contains "2tet")
o3o3x3x3o3/2*c - rawx
o3o3x3o3x3/2*c - [Grünbaumian]
o3o3o3x3x3/2*c - dehad

x3x3x3o3o3/2*c - (contains "2tet")
x3x3o3x3o3/2*c - (contains "2tet")
x3x3o3o3x3/2*c - (contains "2tet")
x3o3x3x3o3/2*c - sicrax
x3o3x3o3x3/2*c - [Grünbaumian]
x3o3o3x3x3/2*c - (contains "2firp")
o3x3x3x3o3/2*c - rapirx
o3x3x3o3x3/2*c - [Grünbaumian]
o3x3o3x3x3/2*c - (contains "2thah")
o3o3x3x3x3/2*c - [Grünbaumian]

x3x3x3x3o3/2*c - rocgrax
x3x3x3o3x3/2*c - [Grünbaumian]
x3x3o3x3x3/2*c - (contains "2thah")
x3o3x3x3x3/2*c - [Grünbaumian]
o3x3x3x3x3/2*c - [Grünbaumian]

x3x3x3x3x3/2*c - [Grünbaumian]
x3o3o3o3/2o3*c - 2hix (?)
   (contains "2pen" as verf)
o3x3o3o3/2o3*c - (contains "2pen")
o3o3x3o3/2o3*c - (contains "2tet")
o3o3o3x3/2o3*c - (contains "2tet")

x3x3o3o3/2o3*c - (contains "2pen")
x3o3x3o3/2o3*c - (contains "2tet")
x3o3o3x3/2o3*c - (contains "2tet")
o3x3x3o3/2o3*c - (contains "2tet")
o3x3o3x3/2o3*c - (contains "2tet")
o3o3x3x3/2o3*c - rawx
o3o3o3x3/2x3*c - [Grünbaumian]

x3x3x3o3/2o3*c - (contains "2tet")
x3x3o3x3/2o3*c - (contains "2tet")
x3o3x3x3/2o3*c - rocrax (old: sircrax)
x3o3o3x3/2x3*c - [Grünbaumian]
o3x3x3x3/2o3*c - rapirx
o3x3o3x3/2x3*c - [Grünbaumian]
o3o3x3x3/2x3*c - [Grünbaumian]

x3x3x3x3/2o3*c - rocgrax
x3x3o3x3/2x3*c - [Grünbaumian]
x3o3x3x3/2x3*c - [Grünbaumian]
o3x3x3x3/2x3*c - [Grünbaumian]

x3x3x3x3/2x3*c - [Grünbaumian]
hixic hinnic

    3   3   3      
  o---o---o---o    
     3 \ / 3/2     
        o          

    o   o    
   3 \ / 3   
      o      
   3 / \ 3   
    o---o    
     3/2     
   o            
  3 \  3        
     o---o      
   3 |   | 3/2  
     o---o      
       3        
o3o3o3o *b3o3/2*c o3o3o3/2o3*b3o o3o3o3o3/2o3*b
x3o3o3o *b3o3/2*c - (contains "2pen")
o3x3o3o *b3o3/2*c - (contains "2tet")
o3o3x3o *b3o3/2*c - (contains "2tet")
o3o3o3x *b3o3/2*c - (contains "2pen")
o3o3o3o *b3x3/2*c - (contains "2tet")

x3x3o3o *b3o3/2*c - (contains "2tet")
x3o3x3o *b3o3/2*c - (contains "2tet")
x3o3o3x *b3o3/2*c - (contains "2pen")
x3o3o3o *b3x3/2*c - (contains "2tet")
o3x3x3o *b3o3/2*c - rabird
o3x3o3x *b3o3/2*c - 
o3x3o3o *b3x3/2*c - rippix
o3o3x3x *b3o3/2*c - 
o3o3x3o *b3x3/2*c - [Grünbaumian]
o3o3o3x *b3x3/2*c - 

x3x3x3o *b3o3/2*c - 
x3x3o3x *b3o3/2*c - 
x3x3o3o *b3x3/2*c - racpix
x3o3x3x *b3o3/2*c - 
x3o3x3o *b3x3/2*c - [Grünbaumian]
x3o3o3x *b3x3/2*c - 
o3x3x3x *b3o3/2*c - roptix
o3x3x3o *b3x3/2*c - [Grünbaumian]
o3x3o3x *b3x3/2*c - 
o3o3x3x *b3x3/2*c - [Grünbaumian]

x3x3x3x *b3o3/2*c - recaptid
x3x3x3o *b3x3/2*c - [Grünbaumian]
x3x3o3x *b3x3/2*c - 
x3o3x3x *b3x3/2*c - [Grünbaumian]
o3x3x3x *b3x3/2*c - [Grünbaumian]

x3x3x3x *b3x3/2*c - [Grünbaumian]
x3o3o3/2o3*b3o - 
o3x3o3/2o3*b3o - 
o3o3x3/2o3*b3o - 

x3x3o3/2o3*b3o - 
x3o3x3/2o3*b3o - 
x3o3o3/2o3*b3x - 
o3x3x3/2o3*b3o - rawt
o3o3x3/2x3*b3o - [Grünbaumian]

x3x3x3/2o3*b3o - ripthin
x3x3o3/2o3*b3x - 
x3o3x3/2x3*b3o - [Grünbaumian]
x3o3x3/2o3*b3x - 
o3x3x3/2x3*b3o - [Grünbaumian]

x3x3x3/2x3*b3o - [Grünbaumian]
x3x3x3/2o3*b3x - repirt
x3o3x3/2x3*b3x - [Grünbaumian]

x3x3x3/2x3*b3x - [Grünbaumian]
x3o3o3o3/2o3*b - 2hehad
o3x3o3o3/2o3*b - 2rhohid
o3o3x3o3/2o3*b - 
o3o3o3x3/2o3*b - 
o3o3o3o3/2x3*b - 

x3x3o3o3/2o3*b - 2thehid (?)
x3o3x3o3/2o3*b - 
x3o3o3x3/2o3*b - 
x3o3o3o3/2x3*b - 
o3x3x3o3/2o3*b - quafdidoh
o3x3o3x3/2o3*b - 
o3x3o3o3/2x3*b - 
o3o3x3x3/2o3*b - 
o3o3x3o3/2x3*b - 2brohahd (?)
o3o3o3x3/2x3*b - [Grünbaumian]

x3x3x3o3/2o3*b - ripperhin
x3x3o3x3/2o3*b - 
x3x3o3o3/2x3*b - 
x3o3x3x3/2o3*b - 
x3o3x3o3/2x3*b - 2howoh
x3o3o3x3/2x3*b - [Grünbaumian]
o3x3x3x3/2o3*b - 
o3x3x3o3/2x3*b - 2bathehad (?)
o3x3o3x3/2x3*b - [Grünbaumian]
o3o3x3x3/2x3*b - [Grünbaumian]

x3x3x3x3/2o3*b - 
x3x3x3o3/2x3*b - 2grahehad (?)
x3x3o3x3/2x3*b - [Grünbaumian]
x3o3x3x3/2x3*b - [Grünbaumian]
o3x3x3x3/2x3*b - [Grünbaumian]

x3x3x3x3/2x3*b - [Grünbaumian]
hinnic
     3/2     
    o---o    
   3 \ / 3   
      o      
   3 / \ 3   
    o---o    
     3/2     
     3/2     
    o---o    
   3 \ / 3   
      o      
   3 / \ 3/2 
    o---o    
      3      
      3      
    o---o    
   3 \ / 3/2 
      o      
   3 / \ 3/2 
    o---o    
      3      
o3o3/2o3*a3o3/2o3*a o3o3o3/2*a3o3/2o3*a o3o3o3/2*a3o3o3/2*a
x3x3/2o3*a3x3/2o3*a - recard

...
x3x3o3/2*a3x3/2o3*a - recard

...
x3x3o3/2*a3x3o3/2*a - recard

...
hinnic
    3  _o_  3  
    _-     -_  
  o           o
   \         / 
  3 \       / 3
     o-----o   
       3/2     
    3  _o_  3  
    _-     -_  
  o-----------o
   \   3/2   / 
  3 \       / 3
     o-----o   
        3      
    3  _o_ 3/2 
    _-     -_  
  o-----------o
   \    3    / 
3/2 \       / 3
     o-----o   
        3      
o3o3o3o3o3/2*a o3o3o3o3o3*a3/2*c o3o3/2o3o3o3/2*a3*c
x3o3o3o3o3/2*a - 2dah
o3x3o3o3o3/2*a - 
o3o3x3o3o3/2*a - 

x3x3o3o3o3/2*a - firn
x3o3x3o3o3/2*a - 2hiquah
x3o3o3x3o3/2*a - 
x3o3o3o3x3/2*a - [Grünbaumian]
o3x3x3o3o3/2*a - firn
o3x3o3x3o3/2*a - 

x3x3x3o3o3/2*a - 2tadah
x3x3o3x3o3/2*a - 
x3x3o3o3x3/2*a - [Grünbaumian]
x3o3x3x3o3/2*a - 
x3o3x3o3x3/2*a - [Grünbaumian]
o3x3x3x3o3/2*a - 

x3x3x3x3o3/2*a - 
x3x3x3o3x3/2*a - [Grünbaumian]
x3x3o3x3x3/2*a - [Grünbaumian]
x3x3o3x3x3/2*a - [Grünbaumian]

x3x3x3x3x3/2*a - [Grünbaumian]
o3x3x3x3o3*a3/2*c - rorpdah

...
x3o3/2x3o3o3/2*a3*c - 2harhan

...
hinnic pentic
    3   3     
  o---o---o   
     3 \ / \ 3
        o---o 
     3/2  3   

    3   3   3  4/3   
  o---o---o---o---o  

    3   3   3      
  o---o---o---o    
     4 \ / 4/3     
        o          
o3o3o3o3o3*b *c3/2*e o3o3o3o4/3o o3o3o3o *b4o4/3*c
o3x3x3x3o3*b *c3/2*e - brewahen


...
x3o3o3o4/3o - tac (convex)
o3x3o3o4/3o - rat (convex)
o3o3x3o4/3o - nit (convex)
o3o3o3x4/3o - rin (convex)
o3o3o3o4/3x - pent (convex)

x3x3o3o4/3o - tot (convex)
x3o3x3o4/3o - sart (convex)
x3o3o3x4/3o - spat (convex)
x3o3o3o4/3x - quacant
o3x3x3o4/3o - bittit (convex)
o3x3o3x4/3o - sibrant (convex)
o3x3o3o4/3x - quappin
o3o3x3x4/3o - bittin (convex)
o3o3x3o4/3x - quarn
o3o3o3x4/3x - quittin

x3x3x3o4/3o - gart (convex)
x3x3o3x4/3o - pattit (convex)
x3x3o3o4/3x - caquapin
x3o3x3x4/3o - pirt (convex)
x3o3x3o4/3x - quacrant
x3o3o3x4/3x - quacpot
o3x3x3x4/3o - gibrant (convex)
o3x3x3o4/3x - quiprin
o3x3o3x4/3x - quiptin
o3o3x3x4/3x - gaqrin

x3x3x3x4/3o - gippit (convex)
x3x3x3o4/3x - quicgrat
x3x3o3x4/3x - quicpatint
x3o3x3x4/3x - quacgarn
o3x3x3x4/3x - gaquapan

x3x3x3x4/3x - gaquacint
x3o3o3o *b4o4/3*c - 
o3x3o3o *b4o4/3*c - 
o3o3x3o *b4o4/3*c - 
o3o3o3x *b4o4/3*c - 
o3o3o3o *b4x4/3*c - 

x3x3o3o *b4o4/3*c - 
x3o3x3o *b4o4/3*c - 
x3o3o3x *b4o4/3*c - 
x3o3o3o *b4x4/3*c - 
o3x3x3o *b4o4/3*c - 
o3x3o3x *b4o4/3*c - 
o3x3o3o *b4x4/3*c - sirpin
o3o3x3x *b4o4/3*c - 
o3o3x3o *b4x4/3*c - fawdint
o3o3o3x *b4x4/3*c - 

x3x3x3o *b4o4/3*c - 
x3x3o3x *b4o4/3*c - 
x3x3o3o *b4x4/3*c - setitdin
x3o3x3x *b4o4/3*c - 
x3o3x3o *b4x4/3*c - gikvacadint
x3o3o3x *b4x4/3*c - 
o3x3x3x *b4o4/3*c - 
o3x3x3o *b4x4/3*c - danbitot
o3x3o3x *b4x4/3*c - sikvacadint
o3o3x3x *b4x4/3*c - getitdin

x3x3x3x *b4o4/3*c - 
x3x3x3o *b4x4/3*c - gadinnert
x3x3o3x *b4x4/3*c - sidacadint
x3o3x3x *b4x4/3*c - gidacadint
o3x3x3x *b4x4/3*c - sadinnert

x3x3x3x *b4x4/3*c - danpit
pentic
    3   3   3    
  o---o---o---o  
 4 \ / 4/3       
    o            
    3   3   3      
  o---o---o---o    
         4 \ / 4/3 
            o      
    4   3   3     
  o---o---o---o   
     3 \ / 3/2    
        o         
o3o3o3o4o4/3*c o3o3o3o4/3o4*c o4o3o3o *b3o3/2*c
x3o3o3o4o4/3*c - 
o3x3o3o4o4/3*c - 
o3o3x3o4o4/3*c - 
o3o3o3x4o4/3*c - 
o3o3o3o4x4/3*c - 

x3x3o3o4o4/3*c - 
x3o3x3o4o4/3*c - 
x3o3o3x4o4/3*c - 
x3o3o3o4x4/3*c - 
o3x3x3o4o4/3*c - 
o3x3o3x4o4/3*c - 
o3x3o3o4x4/3*c - 
o3o3x3x4o4/3*c - 
o3o3x3o4x4/3*c - wavinant
o3o3o3x4x4/3*c - sinnont

x3x3x3o4o4/3*c - 
x3x3o3x4o4/3*c - 
x3x3o3o4x4/3*c - 
x3o3x3x4o4/3*c - 
x3o3x3o4x4/3*c - wacbinant
x3o3o3x4x4/3*c - gektabcadont (old: giktabacadint)
o3x3x3x4o4/3*c - 
o3x3x3o4x4/3*c - gibtadin
o3x3o3x4x4/3*c - gakvebidant
                 (old: gikkivbadant)
o3o3x3x4x4/3*c - naquitant

x3x3x3x4o4/3*c - 
x3x3x3o4x4/3*c - gibcotdin
x3x3o3x4x4/3*c - gibacadint
x3o3x3x4x4/3*c - naquiptant
o3x3x3x4x4/3*c - noqrant

x3x3x3x4x4/3*c - noquapant
x3o3o3o4/3o4*c - 
o3x3o3o4/3o4*c - 
o3o3x3o4/3o4*c - 
o3o3o3x4/3o4*c - 
o3o3o3o4/3x4*c - 

x3x3o3o4/3o4*c - 
x3o3x3o4/3o4*c - 
x3o3o3x4/3o4*c - 
x3o3o3o4/3x4*c - 
o3x3x3o4/3o4*c - 
o3x3o3x4/3o4*c - 
o3x3o3o4/3x4*c - 
o3o3x3x4/3o4*c - 
o3o3x3o4/3x4*c - rawn
o3o3o3x4/3x4*c - ginnont

x3x3x3o4/3o4*c - 
x3x3o3x4/3o4*c - 
x3x3o3o4/3x4*c - 
x3o3x3x4/3o4*c - 
x3o3x3o4/3x4*c - rawcbinant
                 (old: recarnit)
x3o3o3x4/3x4*c - skatbacadint
o3x3x3x4/3o4*c - 
o3x3x3o4/3x4*c - sibtadin
o3x3o3x4/3x4*c - skivbadant
o3o3x3x4/3x4*c - nottant

x3x3x3x4/3o4*c - 
x3x3x3o4/3x4*c - sibcotdin
x3x3o3x4/3x4*c - sibacadint
x3o3x3x4/3x4*c - niptant
o3x3x3x4/3x4*c - nurrant

x3x3x3x4/3x4*c - nippant
x4o3o3o *b3o3/2*c - 
o4x3o3o *b3o3/2*c - 
o4o3x3o *b3o3/2*c - 
o4o3o3x *b3o3/2*c - 
o4o3o3o *b3x3/2*c - 

x4x3o3o *b3o3/2*c - 
x4o3x3o *b3o3/2*c - 
x4o3o3x *b3o3/2*c - 
x4o3o3o *b3x3/2*c - 
o4x3x3o *b3o3/2*c - ribrant
o4x3o3x *b3o3/2*c - 
o4x3o3o *b3x3/2*c - ript
o4o3x3x *b3o3/2*c - 
o4o3x3o *b3x3/2*c - 
o4o3o3x *b3x3/2*c - 

x4x3x3o *b3o3/2*c - sroptin
x4x3o3x *b3o3/2*c - 
x4x3o3o *b3x3/2*c - sorcpit
x4o3x3x *b3o3/2*c - 
x4o3x3o *b3x3/2*c - 
x4o3o3x *b3x3/2*c - 
o4x3x3x *b3o3/2*c - roptit
o4x3x3o *b3x3/2*c - 
o4x3o3x *b3x3/2*c - 
o4o3x3x *b3x3/2*c - 

x4x3x3x *b3o3/2*c - sircaptint
x4x3x3o *b3x3/2*c - 
x4x3o3x *b3x3/2*c - 
x4o3x3x *b3x3/2*c - 
o4x3x3x *b3x3/2*c - 

x4x3x3x *b3x3/2*c - 
pentic
    3   3   4     
  o---o---o---o   
 3 \ / 3/2        
    o             
    4   3   3     
  o---o---o---o   
         3 \ / 3/2
            o     
    4   3   3     
  o---o---o---o   
   3/2 \ / 3      
        o         
o4o3o3o3o3/2*c o4o3o3o3/2o3*c o4o3o3o *b3/2o3*c
x4o3o3o3o3/2*c - 
o4x3o3o3o3/2*c - 
o4o3x3o3o3/2*c - 
o4o3o3x3o3/2*c - 
o4o3o3o3x3/2*c - 

x4x3o3o3o3/2*c - 
x4o3x3o3o3/2*c - 
x4o3o3x3o3/2*c - 
x4o3o3o3x3/2*c - 
o4x3x3o3o3/2*c - 
o4x3o3x3o3/2*c - 
o4x3o3o3x3/2*c - 
o4o3x3x3o3/2*c - rawt
o4o3x3o3x3/2*c - 
o4o3o3x3x3/2*c - 2rinhit

x4x3x3o3o3/2*c - 
x4x3o3x3o3/2*c - 
x4x3o3o3x3/2*c - 
x4o3x3x3o3/2*c - sircarn
x4o3x3o3x3/2*c - 
x4o3o3x3x3/2*c - katacbadint
o4x3x3x3o3/2*c - repirt
o4x3x3o3x3/2*c - 
o4x3o3x3x3/2*c - 
o4o3x3x3x3/2*c - 

x4x3x3x3o3/2*c - srocgrin
x4x3x3o3x3/2*c - 
x4x3o3x3x3/2*c - 
x4o3x3x3x3/2*c - 
o4x3x3x3x3/2*c - 

x4x3x3x3x3/2*c - 
o4x3x3x3/2o3*c - repirt

x4x3x3x3/2o3*c - srocgrin

...
x4o3x3o *b3/2x3*c - skovactaden
x4x3x3o *b3/2o3*c - sroptin

x4o3x3x *b3/2x3*c - scadnicat

...
pentic
    3   3  4/3    
  o---o---o---o   
 3 \ / 3/2        
    o             
   4/3  3   3     
  o---o---o---o   
         3 \ / 3/2
            o     
   4/3  3   3     
  o---o---o---o   
     3 \ / 3/2    
        o         
o4/3o3o3o3o3/2*c o4/3o3o3o3/2o3*c o4/3o3o3o *b3o3/2*c
x4/3o3o3o3o3/2*c - 
o4/3x3o3o3o3/2*c - 
o4/3o3x3o3o3/2*c - 
o4/3o3o3x3o3/2*c - 
o4/3o3o3o3x3/2*c - 

x4/3x3o3o3o3/2*c - 
x4/3o3x3o3o3/2*c - 
x4/3o3o3x3o3/2*c - 
x4/3o3o3o3x3/2*c - 
o4/3x3x3o3o3/2*c - 
o4/3x3o3x3o3/2*c - 
o4/3x3o3o3x3/2*c - 
o4/3o3x3x3o3/2*c - 
o4/3o3x3o3x3/2*c - 
o4/3o3o3x3x3/2*c - 

x4/3x3x3o3o3/2*c - 
x4/3x3o3x3o3/2*c - 
x4/3x3o3o3x3/2*c - 
x4/3o3x3x3o3/2*c - qracorn
x4/3o3x3o3x3/2*c - 
x4/3o3o3x3x3/2*c - 
o4/3x3x3x3o3/2*c - 
o4/3x3x3o3x3/2*c - 
o4/3x3o3x3x3/2*c - 
o4/3o3x3x3x3/2*c - 

x4/3x3x3x3o3/2*c - gorcgrin
x4/3x3x3o3x3/2*c - 
x4/3x3o3x3x3/2*c - 
x4/3o3x3x3x3/2*c - 
o4/3x3x3x3x3/2*c - 

x4/3x3x3x3x3/2*c - 
x4/3x3x3x3/2o3*c - gorcgrin

...
x4/3x3o3o *b3x3/2*c - gorcpit

x4/3x3x3o *b3o3/2*c - groptin

x4/3x3x3x *b3o3/2*c - gircaptint

...
pentic

   4/3  3   3     
  o---o---o---o   
   3/2 \ / 3      
        o         

   3/2     
  o---o    
 3 \ / 3   
    o      
 3 / \ 4/3 
  o---o    
    4      
  3/2  
 o---o 
3 \ / 3
   o   
3 / \ 4
 o---o 
  4/3  
o4/3o3o3o *b3/2o3*c o4/3o4o3*a3o3/2o3*a o4o4/3o3*a3o3/2o3*a
x4/3o3x3o *b3/2x3*c - gokvactaden

x4/3o3x3x *b3/2x3*c - gacdincat

...
x4/3x4o3*a3x3/2o3*a - garcornit

x4/3x4x3*a3x3/2o3*a - noqraptant

...
x4x4/3o3*a3x3/2o3*a - recarnit

x4x4/3x3*a3x3/2o3*a - narptint

...
pentic
        o        
        3        
        o        
      / 3 \      
    3/2_o_ 4     
   /_3    4/3\   
  o-----4-----o  
        o        
        3        
        o        
      / 3 \      
    3/2_o_4/3    
   /_3     4_\   
  o----4/3----o  
 
o3o4o4/3o3o3/2*b3*d *c4*e o3o4/3o4o3o3/2*b3*d *c4/3*e
o3o4x4/3x3x3/2*b3*d *c4*e - raktatant

o3x4x4/3x3o3/2*b3*d *c4*e - skevatant

x3x4x4/3x3o3/2*b3*d *c4*e - scatnit

...
o3x4/3x4x3o3/2*b3*d *c4/3*e - gakevatant

x3x4/3x4x3o3/2*b3*d *c4/3*e - gactanet

...
demipentic
o 3
 \ 
  o---o---o
 /  3   3
o 3/2
o 3
 \ 
  o---o---o
 / 3/2  3
o 3
o 3
 \ 
  o---o---o
 /  3  3/2
o 3
o3o3/2o *b3o3o o3o3o *b3/2o3o o3o3o *b3o3/2o
x3o3/2o *b3o3o - hin
o3o3/2x *b3o3o - hin
x3o3/2o *b3x3o - sirhin
o3o3/2x *b3x3o - sirhin isomorph
   (contains "2thah")
...
x3o3o *b3/2o3o - hin
x3o3o *b3/2x3o - sirhin isomorph
   (contains "2thah")
...
x3o3o *b3o3/2o - hin
x3o3o *b3x3/2o - sirhin
...
some (multi)prisms
x3o3o x4/3x - stotet
x3x3x x4/3x - stotoe
...
x3o o3x4/3x - traquith
x3x x3x4/3x - haquitco
...
x o3o3x4/3x - quititip
x x3x3x4/3x - gaquidpothip
...
x3o o3x4/3x4*c - tragocco
...
x3o o3x4x4/3*c - trasocco
...
x o3o3x4/3x4*c - gittithip
...
x o3o3x4x4/3*c - stethip
...
x o3o3o5/3x - gogiship
...
x x5o5/2o5o - gohip
x x5o5/2x5o - sirghipe
x x5o5/2o5x - 2sophip
...


other non-convex uniform polytera   (up)

Warning: The following list in fact just contains the so far provided polytera, which were not listed above. Whether those indeed are non-kaleidoscopical or just ask for some more complicate Dynkin diagram, in fact has not been checked so far.

snubs and holosnubs acc. to other regiments making up own regiments
β2o3o3o5β   - sidtaxhiap
β2o3o3o5/3β - gadtaxhiap

β2β5o5/2o5o - sishia+2x2sishi
β2β5o5/2x5o - rasishia+2x2rasishi
β2β5o5/2o5x - sidpippadia+240x2sissid

...
bad       (dot regiment)
bend      (dot regiment)
cabbix    (dot regiment)
caddix    (dot regiment)

gatopin   (fawdint regiment)
gipbin    (fawdint regiment)

gancpan   (getitdin regiment)

gabdacan  (ginnont regiment)

dah       (hin regiment)
han       (hin regiment)
hit       (hin regiment)
radah     (hin regiment)
rinah     (hin regiment)

irl       (nit regiment)
irohlohn  (nit regiment)
nat       (nit regiment)
raccoth   (nit regiment)

gloptin   (quiptin regiment)

ratchet   (rat regiment)
rhohid    (rat regiment)

tin       (rin regiment)

firx      (rix regiment)

sophip    (roxip regiment)

howoh     (sart regiment)

lawx      (sarx regiment)
rawcax    (sarx regiment)

bacox     (scad regiment)
chad      (scad regiment)
dacox     (scad regiment)
dibhid    (scad regiment)

fenandoh  (siphin regiment)
fidoh     (siphin regiment)

kafandoh  (sirhin regiment)

topax     (spix regiment)

hehad     (tac regiment)
nophap    (tac regiment)
phap      (tac regiment)

gadencorn (wacbinant regiment)

gafwan    (wavinant regiment)

...
sishia
rasishia

...


© 2004-2025
top of page