| Acronym | ... | ||||||||||||||||||
| Name | Powertope {p}{8} | ||||||||||||||||||
(Note that for the herein being called length-factor w in the picture the letter q is being used instead.) | |||||||||||||||||||
| Circumradius | sqrt[1+1/sqrt(2)]/sin(π/p) | ||||||||||||||||||
| Especially |
| ||||||||||||||||||
| Confer |
| ||||||||||||||||||
|
External links |
|
The Powertope asks here to use the p-fold ring of the (long) prisms x.-p-o. w. .. from the first layer plus the orthogonal p-fold ring of (long) prisms .w .. .x-p-.o from the other layer, and then to connect them directly, i.e. in a lacing sense. These lacing elements thus are rectangular trapezoprisms where the rectangular bases have edge sizes x and w, while the lacing edge size will be y, as is just described by the elements xw .. wx ..&#zy.
Incidence matrix according to Dynkin symbol
xw-p-oo wx-p-oo&#zy where: w = 1+sqrt(2) = 2.414214
y = 1/sin(π/p)
o.-p-o. o.-p-o. & | 2pp | 2 2 1 | 1 4 4 | 2 4
---------------------+-----+------------+------------+------
x. .. .. .. & | 2 | 2pp * * | 1 2 1 | 2 2
.. .. w. .. & | 2 | * 2pp * | 0 2 1 | 1 2
.. .. .. ..&#y | 2 | * * pp | 0 0 4 | 0 4
---------------------+-----+------------+------------+------
x.-p-o. .. .. & | p | p 0 0 | 2p * * | 2 0
x. .. w. .. & | 4 | 2 2 0 | * 2pp * | 1 1
xw .. .. ..&#y & | 4 | 1 1 2 | * * 2pp | 0 2
---------------------+-----+------------+------------+------
x.-p-o. w. .. & ♦ 2p | 2p p 0 | 2 p 0 | 2p *
xw .. wx ..&#y ♦ 8 | 4 4 4 | 0 2 4 | * pp
© 2004-2025 | top of page |