Acronym | casch |
Name | cantic snub cubic honeycomb |
Confer |
|
External links |
Although all cells individually have uniform realisations, the honeycomb as a total can not be made uniform: The mere edge-alternated faceting (here starting at grich) e.g. would use edges of 4 different sizes: |s4o| = q = sqrt(2) = 1.414214, |sefa(x4s)| = w = 1+sqrt(2) = 2.414214, |s3s| = h = sqrt(3) = 1.732051, as well as the here surviving x = 1 (refering to elements of x4s3s4o here).
Incidence matrix according to Dynkin symbol
x4s3s4o (N → ∞) demi( . . . . ) | 12N | 1 1 1 4 | 1 2 1 4 3 | 2 1 3 ----------------+-----+--------------+------------------+------- demi( x . . . ) | 2 | 6N * * * | 1 0 1 2 0 | 2 0 2 x . . s4o | 2 | * 6N * * | 0 0 1 0 2 | 0 1 2 q sefa( x4s . . ) | 2 | * * 6N * | 1 0 0 2 0 | 2 0 1 w sefa( . s3s . ) | 2 | * * * 24N | 0 1 0 1 1 | 1 1 1 h ----------------+-----+--------------+------------------+------- x4s . . | 4 | 2 0 2 0 | 3N * * * * | 2 0 0 x w . s3s . | 3 | 0 0 0 3 | * 8N * * * | 1 1 0 h3o x . s4o | 4 | 2 2 0 0 | * * 3N * * | 0 0 2 x q sefa( x4s3s . ) | 4 | 1 0 1 2 | * * * 12N * | 1 0 1 xw&#h sefa( . s3s4o ) | 3 | 0 1 0 2 | * * * * 12N | 0 1 1 oq&#h ----------------+-----+--------------+------------------+------- x4s3s . | 24 | 12 0 12 24 | 6 8 0 12 0 | N * * xwX wXx Xxw&#zh (X = x+2q = q+w) pyritohedral sirco variant . s3s4o | 12 | 0 6 0 24 | 0 8 0 0 12 | * N * Qqo qoQ oQq&#zh (Q = 2q) pyritohedral ike variant sefa( x4s3s4o ) | 6 | 2 2 1 4 | 0 0 1 2 2 | * * 6N wx oq&#h 2-cup variant (wedge) starting figure: x4x3x4o
s3s3s *b4x demi( . . . . ) | 24N | 1 1 2 2 1 | 1 1 1 1 3 2 2 | 1 1 1 3 -------------------+-----+---------------------+-------------------------+----------- demi( . . . x ) | 2 | 12N * * * * | 0 1 0 1 0 1 1 | 0 1 1 2 x s 2 s . | 2 | * 12N * * * | 0 1 0 0 2 0 0 | 1 0 0 2 q sefa( s3s . . ) | 2 | * * 24N * * | 1 0 0 0 1 1 0 | 1 1 0 1 h sefa( . s3s . ) | 2 | * * * 24N * | 0 0 1 0 1 0 1 | 1 0 1 1 h sefa( . s . *b4x ) | 2 | * * * * 12N | 0 0 0 1 0 1 1 | 0 1 1 1 w -------------------+-----+---------------------+-------------------------+----------- s3s . . | 3 | 0 0 3 0 0 | 8N * * * * * * | 1 1 0 0 h3o s 2 s x | 4 | 2 2 0 0 0 | * 6N * * * * * | 0 0 0 2 x q . s3s . | 3 | 0 0 0 3 0 | * * 8N * * * * | 1 0 1 0 h3o . s . *b4x | 4 | 2 0 0 0 2 | * * * 6N * * * | 0 1 1 0 x w sefa( s3s3s . ) | 3 | 0 1 1 1 0 | * * * * 24N * * | 1 0 0 1 oq&#h sefa( s3s . *b4x ) | 4 | 1 0 2 0 1 | * * * * * 12N * | 0 1 0 1 xw&#h sefa( . s3s *b4x ) | 4 | 1 0 0 2 1 | * * * * * * 12N | 0 0 1 1 xw&#h -------------------+-----+---------------------+-------------------------+----------- s3s3s . | 12 | 0 6 12 12 0 | 4 0 4 0 12 0 0 | 2N * * * Qqo qoQ oQq&#zh (Q = 2q) pyritohedral ike variant s3s . *b4x | 24 | 12 0 24 0 12 | 8 0 0 6 0 12 0 | * N * * xwX wXx Xxw&#zh (X = x+2q = q+w) pyritohedral sirco variant . s3s *b4x | 24 | 12 0 0 24 12 | 0 0 8 6 0 0 12 | * * N * xwX wXx Xxw&#zh (X = x+2q = q+w) pyritohedral sirco variant sefa( s3s3s *b4x ) | 6 | 2 2 2 2 1 | 0 1 0 0 2 1 1 | * * * 12N wx oq&#h 2-cup variant (wedge) starting figure: x3x3x *b4x
© 2004-2025 | top of page |