Acronym | ... |
Name |
hyperbolic s5s3s5s honeycomb, alternated hyperbolic great prismatodisdodecahedral honeycomb |
Surely this hyperbolic honeycomb is possible as a mere alternation of x5x3x5x only. Accordingly its edges (within an euclidean setting) would have size x(4) = q = sqrt(2) = 1.414214, x(6) = h = sqrt(3) = 1.732051, and x(10) = sqrt[(5+sqrt(5))/2] = 1.902113 respectively.
Incidence matrix according to Dynkin symbol
s5s3s5s (N → ∞) demi( . . . . ) | 30N | 2 1 4 2 | 2 1 6 6 | 2 2 4 ------------------+-----+-----------------+-----------------+--------- s 2 s . & | 2 | 30N * * * | 0 0 2 2 | 1 1 2 x(4) s 2 . s | 2 | * 15N * * | 0 0 0 4 | 0 2 2 x(4) sefa( s5s . . ) & | 2 | * * 60N * | 1 0 1 1 | 1 1 1 x(10) sefa( . s3s . ) | 2 | * * * 30N | 0 1 2 0 | 2 0 1 x(6) ------------------+-----+-----------------+-----------------+--------- s5s . . & | 5 | 0 0 5 0 | 12N * * * | 1 1 0 . s3s . | 3 | 0 0 0 3 | * 10N * * | 2 0 0 sefa( s5s3s . ) & | 3 | 1 0 1 1 | * * 60N * | 1 0 1 sefa( s5s 2 s ) & | 3 | 1 1 1 0 | * * * 60N | 0 1 1 ------------------+-----+-----------------+-----------------+--------- s5s3s . & | 60 | 30 0 60 60 | 12 20 60 0 | N * * snid s5s 2 s & | 10 | 5 5 10 0 | 2 0 0 10 | * 6N * pap sefa( s5s3s5s ) | 4 | 2 1 2 1 | 0 0 2 2 | * * 30N verf(x5x3x5x)
© 2004-2025 | top of page |