Acronym | ... |
Name | hyperbolic o3β4β3o5*a tesselation |
Surely this hyperbolic honeycomb is possible as a mere alternation of o3x4x3o5*a only. Accordingly its edges (within an euclidean setting) would have size x = 1 and k = sqrt[2+sqrt(2)] = 1.847759 respectively.
Incidence matrix according to Dynkin symbol
o3β4β3o5*a (N → ∞) both( . . . . ) | 12N | 20 20 | 10 10 30 10 | 10 2 10 ---------------------+-----+-----------+------------------+---------- sefa( o3β . . ) & | 2 | 120N * | 1 0 1 1 | 1 1 1 x sefa( . s4s . ) | 2 | * 120N | 0 1 2 0 | 2 0 1 k ---------------------+-----+-----------+------------------+---------- o3β . . & | 3 | 3 0 | 40N * * * | 1 1 0 x3o both( . s4s . ) | 4 | 0 4 | * 30N * * | 2 0 0 k4o sefa( o3β4β . ) & | 3 | 1 2 | * * 120N * | 1 0 1 ox&#k = {(t,T,T)} sefa( o3β . o5*a ) & | 5 | 5 0 | * * * 24N | 0 1 1 x5o ---------------------+-----+-----------+------------------+---------- o3β4β . & ♦ 24 | 24 48 | 8 12 24 0 | 5N * * with verf [4,t,4,T,3/2,T] o3β . o5*a & ♦ 12 | 60 0 | 20 0 0 12 | * 2N * sefa( o3β4β3o5*a ) | 10 | 10 10 | 0 0 10 2 | * * 12N xo5ox&#k (tall pap variant) starting figure: o3x4x3o5*a
© 2004-2024 | top of page |