Acronym | n{4}2 |
Name | complex n-edged square |
External links |
The incidence matrix of the real encasing polytope (n,n-dip) is
xno xno (n>2) . . . . | nn | 4 | 2 4 | 4 -----------+----+-----+-------+--- x . . . & | 2 | 2nn | 1 2 | 3 -----------+----+-----+-------+--- xno . . & | n | n | 2n * | 2 x . x . | 4 | 4 | * nn | 2 -----------+----+-----+-------+--- xno x . & ♦ 2n | 3n | 2 n | 2n
The incidence matrix of the complex polytope thus is
nn | 2 ---+--- n | 2n
Generators
with e = exp(2πi/n), E = exp(2πi k/n), where 1 < k < n and k not divisor of n R0 = / e 0 \ , R1 = / 0 1 \ \ 0 E / \ 1 0 / R0n = 1 (rotation-rotation*) R12 = 1 (exchange) R0 * R1 * R0 * R1 = R1 * R0 * R1 * R0 (rot. → up → rot.* → down = up → rot.* → down → rot.)
© 2004-2024 | top of page |