Acronym n{4}2{3}2...2{3}2
Name complex n-edged hypercube   (of complex d-dimensional space)
Confer n{4}2 (d=2)   n{4}2{3}2 (d=3)   n{4}2{3}2{3}2 (d=4)  

The incidence matrix of the complex polytope is derived as follows:


Generators

R0n  =  1                                  (rotation-rotation*-rotation*-...)
Rn2  =  1                                  (exchange n & (n+1),   n > 0)
R0 * R1 * R0 * R1  =  R1 * R0 * R1 * R0    (rot. → up → rot.* → down  =  up → rot.* → down → rot.)
Rn * R(n+k)  =  R(n+k) * Rn                (k > 1,   n < d-k)
Rn * R(n+1) * Rn  =  R(n+1) * Rn * R(n+1)  (exchange n & (n+2),   n > 0)

© 2004-2024
top of page