Acronym | n{4}2{3}2...2{3}2 |
Name | complex n-edged hypercube (of complex d-dimensional space) |
Confer | n{4}2 (d=2) n{4}2{3}2 (d=3) n{4}2{3}2{3}2 (d=4) |
The incidence matrix of the complex polytope is derived as follows:
Generators
R0n = 1 (rotation-rotation*-rotation*-...) Rn2 = 1 (exchange n & (n+1), n > 0) R0 * R1 * R0 * R1 = R1 * R0 * R1 * R0 (rot. → up → rot.* → down = up → rot.* → down → rot.) Rn * R(n+k) = R(n+k) * Rn (k > 1, n < d-k) Rn * R(n+1) * Rn = R(n+1) * Rn * R(n+1) (exchange n & (n+2), n > 0)
© 2004-2024 | top of page |