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Abstract: There are four special operators on polytopes – join, fusil, prism, and meet. Joins create pyramid forms, 

joining all elements. Fusils creates cross polytopes, “fusing” all elements excluding bodies. Prisms create hypercubes 

as Cartesian products. Meets use Cartesian products of polytope nets to generate skew polytopes, also excluding 

bodies. This paper explores lower dimensional examples of these operators and how to work with them. The f-vectors 

for all 4 operators can be generated by products like coefficients of polynomial products. Detailed k-face elements are 

computed via product tables and can be shown in Hasse diagrams. 

1 Introduction: Four Operators 

In this paper we use Norman Johnson names [4] with join, (∨), fusil (a 

rhombic “sum”), (+), prism (a cartesian product), ×. Johnson named fusil 

from a rhombic shape, and it also contains the verb fuse as the element 

polytopes can share the same center without degeneration. Johnson didn’t 

mention the final meet (∧), but join-meet are a natural extension, reminding 

us of union and intersection. 

A 2016 paper [3], described all 4 products and names our meet operator as a 

topological product, symbol (□). 

Richard Klitzing [5] name the four operators. The join operator, (×1,1) is called a pyramid product. 

The fusil operator (×1,0), called a tegum product. The prism operator, (×0,1). Finally, the meet 

operator, (×0,0) is called a honeycomb product. 

Figure 1 shows the join can be seen as a “dimensional lift” of the fusil (+), while prism and fusil 

are duals, and meet is a skew down-rank construction from the prism. 

The operators can be expressed purely abstractly, as orthogonal products of k-faces of each 

polytope. An i-element polytope A product with a j-element polytope B defines an i×j matrix of 

product elements. The join and fusil have joined elements, and the prism and meet have prism 

elements. These will be described in detailed examples with product tables and Hasse diagrams. 

Figure 2 shows example figures for 

all 4 operators, joining a pentagon 

and a point, fusing a pentagon and a 

segment, prism of a pentagon and 

segment, and a meet of two 

orthogonal pentagons, projected 

down from 4-dimensions. 

 

Figure 1 

Figure 2 
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1.1 Polytope Rank 

An n-polytope is said to have rank n, bounded by (n-1)-faces. A polygon is rank 2, bounded by 1-

faces or edges, polyhedron rank 3, bounded by 2-faces. 

The join operator adds one dimension or rank, while meet subtracts one rank.  

•   Join: Rank(A ∨ B) = Rank(A) + Rank(B) + 1 

•  Fusil: Rank(A + B) = Rank(A) + Rank(B) 

• Prism: Rank(A × B) = Rank(A) + Rank(B) 

•  Meet: Rank(A ∧ B) = Rank(A) + Rank(B) – 1 

1.2 Polytope f-vectors and products 

A product polytope’s f-vector can be computed like polynomial products from its elements. The 

polynomial xk powers are mapped onto k-faces, with term coefficients as each f-vector count 

element. 

The products can be seen in by extended f-vectors. An f-vector lists counts of k-faces, k=0…n-1. A 

f-vector is extended by a -1-face element (empty set, or nullitope) as count 1 for the join and fusil 

operations. The join and prism operators also include the body as an n-face (body) as 1. 

A regular polytope is uniquely defined by its f-vector counts, while other polytopes must include a 

list of k-face polytope types for completeness. 

These extended f-vectors are written with a leading 1 (nullitope), or trailing 1 (body). We can use 

the operators as (∨, +, ×, ∧), or subscript versions used by Klitizing (×1,1, ×1,0, ×0,1, ×,0,0).  

• Join ∨ or ×1,1: (1,f,1) 

• Fusil + or ×1,0: (1,f) 

• Prism × or ×0,1: (f,1) 

• Meet ∧ or ×,0,0: (f)  

Figure 3 (left) shows a square pyramid as a join of a 

square base and an offset point. 

The square base has extended f-vector (1,4,4,1), and a 

point can be represented as (1,1). Their product can be 

computed as (1+4x+4x2+x3)(1+x)=1+5x+8x2+5x3+x4. 

Then coefficients can be extracted as (1,5,8,5,1). A 

square pyramid has 5 vertices, 8 edges, and 5 faces. 

Figure 3 (right) shows a square prism product. It doesn’t include the leading nullitope 1. 

A square is (4,4,1), and a segment (2,1). Their product as a polynomial is 

(4+4x+x2)*(2+x)=8+12x+6x2+x3, coefficients extracted into extended f-vector (8,12,6,1). A cube 

has 8 vertices, 12 edges, and 6 faces. 

1.3 Characteristic polynomial and Euler characteristic 

If we consider the extended f-vector a polynomial, f(x), with f(0)=1, and f(-1)=0 for convex 

polytopes (or topological spheres). This is related to the Euler characteristic, which is 0 for even 

Figure 3 

https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Abstract_polytope#Rank
https://en.wikipedia.org/wiki/Polygon
https://en.wikipedia.org/wiki/Polyhedron
https://en.wikipedia.org/wiki/Polyhedral_combinatorics#Faces_and_face-counting_vectors
https://en.wikipedia.org/wiki/Polyhedron#Abstract_polyhedra
https://en.wikipedia.org/wiki/Polyhedron#Abstract_polyhedra
https://en.wikipedia.org/wiki/Regular_polytope
https://en.wikipedia.org/wiki/Square_pyramid
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dimensions, and 2 for odd dimensions. However the inclusion of the nullitope and body elements 

allow both even and odd dimensional convex polytopes to have f(-1)=0. 

2 Polygon-point Joins (pyramids) 

Figure 4 shows a series of pyramids (polygon-point joins). The first three can be equilateral. The 

rest will only have isosceles triangle lateral faces. A p-gonal pyramid has (p+1,2p,1+p) elements. 

 

Figure 4 

Higher dimensional polytopes can also be joined with a point to make higher polytopes. A dual join 

for a pyramid *(A∨( )) =(*A)∨( ). {p} is Schläfli symbol for regular p-gon, and ( ) for a point. 

2.1 Hasse Diagrams and 

Product Tables 

A Hasse diagram [6] can be used 

to represent the-face elements of a 

polytope. Symmetric polytopes 

can be represented as a reduced 

Hasse diagram with counts 

associated with each k-face type. 

For a polytope product A∨B, each 

i-face of A is joined to each j-face 

of B, creating a (i+j+1)-face. This 

is represented in the product table, 

and has a direct correspondence to 

a Hasse diagram. 

Figure 5 shows a Hasse Diagram 

for a Square pyramid left. On the right 

is the same Hasse diagram simplified by grouping elements in the same symmetry positions and 

including a node count. The lower right shows the equivalent product table with 4 square elements 

in row headers (1,4,4,1), and two vertex elements in columns headers (1,1). 

Figure 5 

https://en.wikipedia.org/wiki/Pyramid_(geometry)
https://en.wikipedia.org/wiki/Schl%C3%A4fli_symbol
https://en.wikipedia.org/wiki/Hasse_diagram
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2.2 Joins and Fusils of segments 

The fusil product represents a subset of a join product where body elements are excluded. A join 

and fusil contain the same number of vertices. Geometrically a fusil can have an orthogonal offset 

and this will create a “skew polytope” product. 

For example, figure 6 shows the join of 2 segments (1-polytopes) will create a tetragonal 

disphenoid, a lower symmetry of the regular tetrahedron. 

 

Figure 6 

Figure 7 shows the fusil product of two segments is similar but drops the segment (body) elements, 

reducing the disphenoid into a skew square or rhombus. If the offset length of the join/fusil is 

reduced to zero it becomes a planar square or rhombus. 

 

Figure 7 

https://en.wikipedia.org/wiki/Disphenoid
https://en.wikipedia.org/wiki/Disphenoid
https://en.wikipedia.org/wiki/Regular_tetrahedron


The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823 
 

61 
 

2.3 Joins, semi-joins, and fusils 

We can see the join products are expressed as (1,fA,1)*(1,fB,1), and a fusil is expressed as 

(1,fA)*(1,fB). 

This suggests a possibility of a hybrid (1,fA)*(1,fB,1) and (1,fA,1)*(1,fB), and topologically this is 

valid, although it creates “open” polytopes, ridges with only 1 facet attached. We call these semi-

joins, and use ⊢ and ⊣ as partial + symbols, reminding us the side that has the horizontal line 

dropped the body element. 

1. Join A ∨ B (1,fA,1)*(1,fB,1) 

2. Semi-joins:  

   A ⊢ B (1,fA,1)*(1,fB)  

   A ⊣ B (1,fA)*(1,fB,1)  

3. Fusil A + B (1,fA)*(1,fB) 

Figure 8 shows the join, semijoin,and fusil relations. 

This allows us to see the join as the union of 2 semi-

joins, the fusil the skew-intersection of semi-joins: 

          Union: (A ⊢ B) ⋃ (A ⊣ B) = A ∨ B  

 Intersection: (A ⊢ B) ⋂ (A ⊣ B) = A + B 

Figure 9 shows the join of 2 segments again. The join makes a disphenoid tetrahedron. The semi-

joins make half-polyhedra, and the fusil is the intersection or open boundary of each. 

 

Figure 9 

Again, we can see, geometrically, the join requires an orthogonal offset to avoid degeneracy, while 

the fusil does not, so it can be flattened into a planar square or rhombus. 

A skew polytope is valid, while it just doesn’t have a well-defined interior since it can’t bound a 

volume in the higher dimensional space. 

Triple fusils would have 4 semi-joins, and we’d need to union all of them to make a full join: (A ⊢ 

B ⊢ C), (A ⊣ B ⊢ C), (A ⊢ B ⊣ C), and (A ⊣ B ⊣ C). 

Figure 8 
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2.4 Polygon-segment joins and fusils (wedges and dipyramids) 

Joining a polygon and a segment requires 4-dimensions to avoid degeneracy, but we can draw them 

as projective 3D diagrams, as if the offset is zero, and elements overlap in space. 

A polygonal join {p} ∨ { }. {p} is the Schläfli symbol for a regular p-gon, and { } is the symbol for a 

line segment (1-polytope). This paper proposes calling a segment join as a wedge, while if both 

joined polytopes are higher than a segment, a double join, duo-join or duo-wedge. 

The polygonal fusils can exist in 3-dimensions, known as bipyramids or dipyramids, seen as the 

union of an up and down polygonal pyramid sharing the same base polygon. 

Figure 10 shows joins (wedges) above, and fusils (dipyramids). In general, they have isosceles 

triangle faces, the join of a segment and point. The wedges are drawn as wireframes, except for the 

original segment in red, and polygon in blue. The full joins include 2 pyramid cells (up and down), 

and n disphenoid cells sharing the red segment and each edge of the blue polygon. 

 

Figure 10 

  

https://en.wikipedia.org/wiki/Schl%C3%A4fli_symbol
https://en.wikipedia.org/wiki/Regular_polygon
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 3 Prism and meet products 

Abstractly, prism products compute 

similarly to join product tables, except there 

are no nullitope elements. A prism product 

of a polytope and a point creates the same 

polytope, so the point can be considered an 

identity element. 

Figure 11 shows a prism product of a 

pentagon and a segment, producing a 

pentagonal prism in 3-dimensions. We can 

see the prism product table defines all of the 

elements, where a point is an identity 

element, A × ( ) = A. The symmetry-

grouped Hasse diagram shows the same 

product table as a graph, red numbers as counts, and rows representing elements of the same rank, 

and blue lines show sub-element relations. 

The f-vector calculation takes a pentagon (5,5,1) with segment (2,1), producing an f-vector 

(10,10+5,2+5,1), 10 vertices, 15 edge, and 7 faces. 

3.1 Polygonal prisms and meets 

Figure 12 (top) shows a 

series of polygonal 

prisms, {p}×( ), is a 

product of a polygon {p} 

and point ( ). The f-vector 

product will be 

(p,p,1)*(2,1) = 

(2p,3p,2+p,1), having 2p 

vertices, 3p edges, and 

2+p faces (p squares, and 

2 p-gons). 

Figure 12 (bottom) shows 

a polygon-segment meet, 

computed as (p,p)*(2)=(2p,2p), 

containing 2p vertices and edges, but it comes out as 2 parallel p-gons, the top and bottom edges of 

the p-gonal prisms.  

We can call these polygon-segment meets “skew polygons”, but being disconnected is problematic. 

For meets of polygons or higher, they are connected. 

 

Figure 11 

Figure 12 
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3.2 Prisms, semi-prisms, and meets 

We can also look at a hybrid semi-prisms that mix a 

prism and meet term, where the meet polytope 

doesn’t have a body element. We propose symbols 

(⋋, ⋌) to represent the semi-prism, with the double-

angles on the side including the body element. 

1. Prism  A × B (fA,1)*(fB,1) 

2. Semi-prisms: 

          A ⋋ B (fA,1)*(fB) 

          A ⋌ B (fA)*(fB,1)  

3. Meet   A ∧ B  (fA)*(fB) 

Figure 13 shows the prism, semiprism,and meet relations. 

This allows us to see the join as the union of 2 semi-joins, and the fusil the skew-intersection of the 

semi-joins: 

•         Union:  (A ⋋ B) ⋃ (A ⋌ B) = A × B  

• Intersection: (A ⋋ B) ⋂ (A ⋌ B) = A ∧ B 

Figure 14 shows the prism of a triangle and a segment, making a triangular prism. The semi-prisms 

make half-polyhedra, and the meet is the intersection or open boundary of each, making our “skew 

hexagon” of 6 vertices, 6 edges, but connected as 2 cycles. 

 

 

Figure 14 

Figure 13 
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3.3 Polygonal double prisms and double meets 

The prism product of two polygons, {p}×{q} is called a double prism or duoprism. These prisms 

exist in four dimensions, so we can’t see them except in projection. 

Figure 15 shows the duo-prism product of a triangle and square, {3}×{4}. It has an f-vector that can 

be computed as (3,3,1)*(4,4,1)= (12,24,19,7,1), having 12 vertices, 24 edges, 19 faces (4 triangles, 

3 squares, and 12 square/rectangles), and 7 cells (3 square prisms, and 4 triangular prisms). 

 

Figure 15 

Figure 16 shows a double meet or 

duomeet of a triangle and square, 

{3}∧{4}, seen as a subset of the 

duoprism table, removing full polygon 

faces, considered “holes”. The net 

becomes a 3×4 square grid which can 

be wrapped into a triangular prism 

adding a third dimension, and a square 

prism in a 4th dimension. 

 

 

                                                                                                                    Figure 16  

https://en.wikipedia.org/wiki/Duoprism
https://en.wikipedia.org/wiki/3-4_duoprism
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Figure 17 shows {p}×{p} or {p}2 duo-prisms for p=3,4,5,6,7,8. Each is shown in 2 symmetry 

orthogonal projections, with central overlapping vertices in yellow on odd p’s. Their meets have the 

same vertices and edges, and have nets as p×p grids that can be wrapped in both directions. 

 

Figure 17 

Figure 18 shows duo-joins or duo-wedges, {p}∨{p} or 2 ⋅ {p} in 5-dimension, with {3}∨{3} as the 

regular 5-simplex. And duo-fusils, {p}+{p} or 2 {p}, for p=3,4,5,6,7,8, (also called duo-pyramids) in 

4-dimensions, with {4}+{4} making the regular 16-cell. These duo-joins are self-dual, while the 

duo-fusils are the duals of the duo-prism. 

Both are shown as vertex-edge graphs, projected into a regular 2p-gon, with red and blue edges 

outlining the two p-gons elements. 

 

Figure 18 

https://en.wikipedia.org/wiki/Duopyramid
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3.4 Triple prisms and meets 

A triple prism product of polygons, or tri-

prism, makes polytopes in 6-dimensions. 

For example, a 6-cube can be decomposed as 

a product of three squares, {4}3. The extended 

f-vector product is computed as (4,4,1)3 = 

(64,192,240,160,60,12,1). It requires a 3×3×3 

product table, and 27 elements in a Hasse 

diagram. 

The product table is split into three 3×3 tables 

in figure 19, while the Hasse diagram is left 

undrawn. 

In contrast, the triple meet {4}∧{4}∧{4} or 

{4}(3) in figure 20 is much simpler, just 8 

elements. It can be seen as a net in 3-dimensions as array of 4×4×4 cubes, where opposite faces can 

be “folded” into 4-cycles by each added dimension, needing 6 dimension. This represents a “flat 3D 

surface” we could live in, repeating in 3 dimensions without intersection, and also called a 3-torus. 

Coxeter would name it {4,3,4 | 4}, a cubic honeycomb {4,3,4} wrapped with square “holes”. 

 

Figure 20 

Figure 19 

https://en.wikipedia.org/wiki/6-cube
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3.5 Prism and meet product with a nonregular polytope 

Figure 21 shows a cuboctahedron-pentagon double prism can be computed, with tracking of 2 

types of cuboctahedron faces, squares and triangles. This just expands the product table by 1 row. A 

cuboctahedron, by Coxeter, is represented as r{4,3}. 

 

Figure 21 

Figure 22 shows meet product of a cuboctahedron-pentagon, removes the body elements, r{4,3}, 

and {5}. The resulting skew polytope exists in 5-dimensional space, but its net can be drawn in 3D, 

by the prism product of a cuboctahedron net and a pentagonal net (6 linear points with 5 edges). 

Folding each component raises the dimension by 1. 

 

Figure 22 

https://en.wikipedia.org/wiki/Cuboctahedron
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4 Summary  

We have introduced 4 primary polytope operators and 4 semi-operators as intermediate forms. We 

advance simple operator symbols and names that are easy to remember. 

These operators can be expressed with f-vector products and Hasses diagrams to help us explore 

interesting higher dimensional polytopes to be confidently computed abstractly, while drawing 

higher dimensional polytopes is often challenging, with nets, orthogonal and perspective 

projections sometimes helping for high symmetry forms. 

Showing lower examples in this paper helps us see the operators in action, while everything applies 

to higher dimensions that become harder to visualize. 

Appendix I and II summarizes the operators and names on various polytopes. Appendix III shows 

regular constructions as powers of the four operators. Appendix IV shows the family of Hanner 

polytopes as an example, and Appendix V shows variations of skew polytopes on n-cubes. 

Figure 23 shows the relations of all 8 operators. 

We can see join-fusil make one set, and prism-meet make another set. The join includes the 

nullitope (∅) as an identity element, while the prism set has a point, ( ), as the identity element. 

The fusil and prism are related by duality (*). The join and meet operators are self-dual. All 

dualities are re-applied to each element, like De Morgan's Law, although polygons and lower are 

topologically self-dual. 

The union of the semi-joins make a join, while the union of semi-prisms make the prism. 

The intersection of two semi-joins makes fusil, and the intersection of two semi-prisms makes the 

meet. 

 

 

Figure 23 

https://en.wikipedia.org/wiki/De_Morgan%27s_laws
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Appendix I: Names and symbols 

In this paper we advance a set of names for the operators and polytopes: 

Four operators: names, symbols, and extended f-vectors: 

• Join ∨ ×1,1 (1, f, 1) 

• Fusil + ×1,0 (1, f) 

• Prism × ×0,1 (f, 1) 

• Meet ∧ ×0,0 (f)  

Polytope names: 

• Join 

o Point   pyramid A ∨ ( ) 

o Segment  wedge  A ∨ { } 

o Polygon+  duo-wedge A ∨ B 

• Fusil 

o Segment  fusil  A + { } 

o Polygon+  duo-fusil A + B 

• Prism 

o Segment  prism  A × { } 

o Polygon+  duo-prism A × B 

• Meet 

o Segment  meet  A ∧ { } 

o Polygon+ duo-meet A ∧ B 

Higher product tuples: (We use Latin prefixes as n-tuples) 

• Double  duo- {wedge, fusil, prism, meet} 

• Triple  tri-  {wedge, fusil, prism, meet} 

• Quadruple quadri-{wedge, fusil, prism, meet} 

• Quintuple quinti- {wedge, fusil, prism, meet} 

• Sextuple sexti- {wedge, fusil, prism, meet} 

• Septuple septi- {wedge, fusil, prism, meet} 

• Octuple octi- {wedge, fusil, prism, meet} 

• n-tuple  n- {wedge, fusil, prism, meet} 

Recursive products: 

• n-join n ⋅ A  

• n-fusil n A 

• n-prism An 

• n-meet A(n) 
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Appendix I: Names and symbols (continued) 

Index and Glossary 

• k-torus – a skew polytope, topological cartesian product of k polygons, in 2k-space. 

• Body – A whole polytope, usually represented as interior. 

• Cell – A 3-face (polyhedron) of a higher polytope 

• Complex polytope – A polytope defined in a complex vector spaces Cn. 

• n-cross / n-orthoplex – Regular n-polytopes with 2n vertices (±1, 0, …, 0) 

• n-cube / hypercube / n-orthotope – Regular n-polytopes with 2n vertices (±1, ±1, ±1…, ±1) 

• n-cubic honeycomb – Infinite n-polytopes, Schläfli symbols: {4,4}, {4,3,4}, {4,3,3,4}, … 

• Dipyramid/bi-pyramid – A fusil product of a polygon (or polytope) and a segment. 

• Duality – Polytopes with swapped k,(n-k) elements, vertices/faces, edges/ridges, etc. 

• Duopyramid – A join of two polytopes, usually 2 polygons. 

• Edges – 1-polytope, line segments 

• k-faces – k-polytope elements 

• Facets – (n-1)-faces of an n-polytope 

• Fusil – a product polytope direct sum operator, connecting all elements without body 

• Ridges – (n-2)-faces in an n-polytope 

• f-vector / extended f-vector – A list of polytope k-face counts, k=0..n-1. Extended includes: -

1-face (1 nullitope), n-face (1 body). 

• Hasse diagram – a mathematical diagram used to represent a finite partially ordered set, 

representing a hierarchy of elements. 

• Join – a product polytope direct sum operator, connecting all elements, including body. 

• Meet – a polytope product cartesian product operator, excluding body elements. 

• Nullitope – a -1-rank polytope (no elements) 

• Point – a 0-rank polytope 

• Polygon / Polyhedron – Specific names for 2-polytope, 3-polytopes 

• Prism – a polytope product cartesian product operator, including body elements. 

• Pyramid – join product of a polytope and a point 

• Rank – An n-polytope has rank n, elements, from 0-faces (vertices) to (n-1)-faces (facets). 

• Regular polytope – a polytope where all k-face elements are identical by symmetry. 

• Schläfli symbol – a description of a regular polytope, {a,b,c,..,y,z} with {a,b,c,…,y} facets. 

• Segment – a 1-polytope bounded by 2 vertices. 

• Semi-join – intermediate operator between join and fusil 

• Semi-prism – intermediate operator between prism and meet 

• n-simplex – a polytope constructed by joining (n+1) vertices. 

• k-skeleton – a substructure of an n-polytope, excluding elements above k-faces. 

• Skew polytope – a polytope spanning a dimension higher than its rank 

• Vertices – point elements of a polytope 

• Wedge – join of a polytope and segment or higher 

Appendix II: Summary table of operators and polytopes 

This table shows common operator names, symbols, and recursive power names. The last two 

columns show f-vector products and names for specific cases.  
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The bold names show the products that generate regular polytopes. (See also Appendix III) 

Operator names Symbols Powers Extended f-vectors Polytope names 

Join [3][4]  

Pyramid product [5] 

 

A ∨ B 

A ⋈ B 

A ×1,1 B 

n ⋅ A 

n ⋅ ( ) 
(1,fA,1)*(1,1) 

(1,fA,1)*(1,2,1) 

(1,fA,1)*(1,fB,1) 
(1,fA,1)*(1,fB,1)*(1,fC,1) 

 (1,fA,1)n 

(1,1)n  

(1,2,1)n  

(1,3,3,1)n 

(1,p,1)n  

(1,p,p,1)n 

A ∨ ( ) = pyramid 

A ∨ { } = wedge 

A ∨ B = double wedge, duowedge 
A ∨ B ∨ C = triple wedge, triwedge 

n ⋅ A = A-topal n-wedge 

n ⋅ ( ) = (n-1)-simplex, αn-1 

n ⋅ { } = (2n-1)-simplex, α2n-1 

n ⋅ {3} = (3n-1)-simplex, α3n-1 

n ⋅ p{ } = complex n-wedge 

n ⋅ {p} = p-gonal n-wedge 

Fusil  

Rhombic sum [4] 

Direct sum [3] 

Tegum product [5] 

 

A + B 

A ×0,1 B 

n A 

n { } 

(1,fA)*(1,2) 

(1,fA)*(1,fB) 

(1,fA)*(1,fB)*(1,fC)  

(1,fA)n 

(1,2)n  

(1,p)n 

(1,p,p)n  

A + { } = fusil, dipyramid 

A + B = double fusil, duofusil 

A + B + C = Triple fusil, trifusil 

n A=A-topal n-fusil  

n{ }=n-fusil, n-orthoplex, βn 

n p{}= generalized n-orthoplex, βn
p 

n{p}=p-gonal n-fusil 

Prism [5] 

Rectangular product [4] 

Cartesian product [3] 

 

A × B 

A ×0,1 B 

An 

{ }n 

 

 

(fA,1)*(2,1) 

(fA,1)*(fB,1) 

(fA,1)*(fB,1)*(fC,1) 

 (fA,1)n 

(2,1)n 

(p,1)n 

(p,p,1)n  

A × { } = prism 

A × B = double prism, duoprism 

A × B × C = triple prism, tri-prism  

An = A-topal n-prism 

{ }n = n-prism, n-cube, γn 

p{ }n = generalized n-cube, γn
p 

{p}n = p-gonal n-prism 

Meet  

Topological product [3] 

Honeycomb [5] 

 

A ∧ B 

A □ B 

A ×0,0 B 

A(n) 

{ }(n) 

{p}(n) 

 

(fA)*(2) 

(fA)*(fB) 

(fA)*(fB)*(fC) 

 (fA)n 

(2)n 

(p)n 

 (p,p)n
 = p

 n(1,1)n 

(∞,∞)n 

A ∧ { } = skew meet 

A ∧ B = skew double meet 

A ∧ B ∧ C = skew triple meet 

A(n) = skew A-topal n-meet 

{ }(n) = skew n-meet  

p{ }(n) =complex skew n-meet 

{p}(n) = skew p-gonal n-meet 

{∞}(n) = cubic n-comb, δn+1 

https://en.wikipedia.org/wiki/Pyramid_(geometry)
https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Bipyramid
https://en.wikipedia.org/wiki/Duopyramid
https://en.wikipedia.org/wiki/Cross-polytope
https://en.wikipedia.org/wiki/Cross-polytope#Generalized_orthoplex
https://en.wikipedia.org/wiki/Prism_(geometry)
https://en.wikipedia.org/wiki/Duoprism
https://en.wikipedia.org/wiki/Hypercube
https://en.wikipedia.org/wiki/Hypercube#Generalized_hypercubes
https://en.wikipedia.org/wiki/Regular_skew_polyhedron
https://en.wikipedia.org/wiki/Hypercubic_honeycomb


The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823 
 

73 
 

Appendix III: Infinite families of regular polytopes 

Product Polytopes as polynomials exist as infinite series, with extended f-vector elements computed 

by the binomial theorem: 

 

These solutions produce infinite 

families of regular polytopes. 

Recursively joining points 

produces an n-simplex. 

Recursively fusing segments 

produces the cross-polytopes. 

Recursive Cartesian products of 

segments produces the measure 

polytope, hypercubes, or n-cube. 

Recursively meeting polygons 

makes Coxeter’s regular skew 

polygons {p}(n) = {4,3n-2,4 | p}. 

As well, Coxeter explored generalized cross polytopes and hypercubes. These exist in Complex 

space Cn where segments of 2 points are replaced by a rotational set of p-points in a complex plane, 

labeled p{ }.  

Figure 24 shows polytopes as vertex-edge skeletons projected into the plane. Joins 

and fusil are combined by a shared center plus optional offset. It shows prism and 

meet products are projected as pairwise vector sums of vertices of element polytope 

vertices. 

  

Figure 24 

Table 2 

https://en.wikipedia.org/wiki/Binomial_theorem
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Appendix III: Infinite families of regular polytopes (continued) 

Example graphs of the regular polytopes are drawn for n=2,3,4,5,6, (n+1)-joins (simplices) on top 

row, (1,1)n+1, n-fusils (cross-polytopes) second row, (1,2)n, n-prisms (hypercubes) third, (2,1)n, and 

n-meets (skew polytopes last, triangle case), (3,3)n. Graphs are orthogonal projections in Petrie 

polygon planes. Drawn as 1-skeletons, the n-prisms, n-meets look the same for polygons and 

higher, although the n-prisms are only uniform, not regular.  

 

Figure 25 

Appendix IV: Special examples 

https://en.wikipedia.org/wiki/Simplex#Symmetric_graphs_of_regular_simplices
https://en.wikipedia.org/wiki/Cross-polytope
https://en.wikipedia.org/wiki/Hypercube#Graphs
https://en.wikipedia.org/wiki/Petrie_polygon
https://en.wikipedia.org/wiki/Petrie_polygon
https://en.wikipedia.org/wiki/N-skeleton
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A Hanner polytope is computed as a 

recursive product of 1-polytopes, { }, 

or higher Hanner polytopes. For 2D, 

there is just the square, and 3D just 

cube and octahedron. For 4D there 

are 4 cases, tesseract, {4,3,3} and 16-

cell, {3,3,4}, but also {4,3}+{ }, 

{3,4}×{ }, a cubic dipyramid, and 

octahedral prism. The cases grow 

exponentially, while the sum of the 

f-vector values sum to 3n for a rank n 

Hanner polytope, like the n-cubes. 

One interesting fact, we see the sum of the k-faces in a Hanner polytope are constant, and this arises 

from the fact both prism and fusil operations on segments use (1,2), and (2,1), so elements are 3n-1 

for n-dimension. 

Many merry meets! 

For multi-prisms the number of permutations increases exponentially when replacing a prism with a 

meet. 

The table below shows regular skew polytopes from prisms of 2 to 4 squares, sharing the 1-

skeletons of the 4-cube, 6-cube, and 8-cube. 

Expressions are evaluated left to right, with a power of 2 increase in solutions, but at tetra-prisms, 

we need parenthesis to express 2 more recursive constructions for the complete set. 

We can see the vertex and edge counts are fixed in each prism to meet substitution. 

 

https://en.wikipedia.org/wiki/Hanner_polytope
https://en.wikipedia.org/wiki/Cube
https://en.wikipedia.org/wiki/Octahedron
https://en.wikipedia.org/wiki/Tesseract
https://en.wikipedia.org/wiki/16-cell
https://en.wikipedia.org/wiki/16-cell
https://en.wikipedia.org/wiki/Cubical_bipyramid
https://en.wikipedia.org/wiki/Octahedral_prism
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Dedication 

I dedicate this paper to Norman Johnson (1930-2017) for his patient correspondences by email. 

Resources 

Many of the fancier 3D polytopes were rendered with Stella: Polyhedron Navigator [7] 

The 2D point-edge projected images were rendered by myself in SVG graphics, some of which also 

exist on Wikipedia commons from my uploads. 
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