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Abstract. Simple quasipenodic tilings with 8-fold and 12-fold symmetry are
presented that

possess local de-linflation symmetry and perfect matching rules. The special feature of these

tilings is that the fuit information is already derivable from the set of vertex sites atone. This

means that the latter
is a

valid representative of the corresponding equivalence class of mutual

local derivability.

l. Introduction.

The existence of perfect matching rules for several quasiperiodic tilings [1-5j is interesting both

mathematically and physically. On the one hand, one obtains so-called aperiodic sets (like
the two rhombi of the Penrose pattern il, 6]), on the other hard they ofler possible geometric
approaches to certain types of long range orientational order, as it occurs in quasicrystals,

compare [1]. While trie former is a well established branch of discrete geometry, the latter

needs both further explanation and exploration.
Several types of matching rules bave been discussed [8], in particular strong matching rules

(enforcing apenodicity) and perfect matching rules (uniquely specifying
a local isomorphism

dass). Perfect matching rules for nonperiodic tilings are automatically strong while the con-

verse is not necessarily true. In this article we focus on perfect matching rules which have

the advantage that they are applicable to the periodic case as well: penodic tilings possess
perfect matching rules in a trivial way via the repetition rule of the fundamental cell. This con

simultaneously be used as a local growth rule whereby one obtains larger and larger patches
from a suitable seed.

The aperiodic case is more complicated though: perfect matching rules are not automatically
local growth rules. Even worse, there is to our knowledge no example known where they

are. Consequently, m companson with the penodic case, possessing matching rules now is

a weaker property from the physical point of view. Nevertheless, one important property
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remains: perfect matching rules ensure the energetic stabilization of quasiperiodic structures

as trie ground state of a suitable Hamiltonian, by favouring finitely many local configurations
relative to others, compare the discussion in [9].

In view of the local nature of physical interactions, this statement requires some care: If

matching rules are significant, they must follow locally from the physical structure, ideally
from the set of atomic positions, say. In geometric terms, the simplest such sets of points

are the vertex sets of tilings. The question then is whether perfect matching rules can be

derived locally from trie set of vertex sites. This is the case for the Penrose and the decagonal
triangle tiling il, loi, but not for the Ammann-Beenker, the Socolar, and the Gàhler-Niizeki

tiling [2, II, 3, 12, 4]. (We restrict trie discussion to planar tilings here; for some general results

we refer to [5, 13] and the remarkable article by Lunnon and Pleasants [14]).
Until recently, several researchers believed that perfect matching rules cannot be obtained for

8- or 12-fold symmetric tilings without introducing decorations which are Dot locally derivable

from the bare tilings. This lias been disproved by two counterexanlples [loi. For trie tilings

Tj(~ and Tj(~~ the existence of local de- linflation symmetry and perfect matching rules was

shown [15, loi, the latter by the composition Idecomposition method [4]. One important result

is that these properties automatically extend to ail members of trie equivalence dass of mutual

local derivability with symmetry preservation [16], called SMLD dass from now on. For trie

concept and its properties we refer to iii]. To be more explicit: trie existence of perfect
matching rules is a property of an SMLD dass, and can trier be formulated for any of its

members (being a dass of local isomorphism LI dass). Now it is obvious that we can choose

a point set representative out of the SMLD dass, and the matching rules are then given as a

finite list of possible patches up to a certain (finite) size. Though this might not seem most

practical, it is certainly very close to the idea to stabilize a quasicrystal by the selection of

finitely many dusters of atoms. Such an approach has been tried for a decagonal T-phase by

a decoration of the decagonal triangle tiling iii. There, the decoration enforces the matching
rules, and it is therefore an explicit example of physical relevance, compare the discussion in [9].

To match physical applications, the selection of a point set representative of an SMLD

dass will prove useful and it is always possible [9, 18]. Consequently, the formulation of

matching rules, if existent, con be dore in this framework, and quite a bit is known about the

icosahedral [19] and the decagonal case
[la, 1, 9]. In this article we are interested in 8- and

12-fold symmetry where still much less is known. For the 8- and 12-fold tilings in [15], trie set

of vertex sites atone does net represent the SMLD dass. Therefore, it was an obvious exercise

to find and describe other members of the SMLD dass which are derivable from their vertex

sites atone. A short presentation of two such tilings is the aim of the present article, though

our generation procedure applies to a much broader dass of cases. We thus continue [loi, in

particular the appendix of it.

2. The eightfold case:
P(~~

Several different 8-fold tilings by squares and rhombi are known. Firstly, there is the standard

octagonal square-rhombus tiling, found independently by Ammann [2] and Beenker iii] and

also by Lück, in the latter case with various other exanlples obtained by substitution [20].
Recently, this tiling was put on a broader basis by investigation of the possible 2-tile substi-

tutions with square and rhombus [21]. Thereby, two more tilings of the mentioned kind were

found. Dur tiling is still another one, because, in terms of the substitution formalism, different

decompositions for both tiles occur, 1-e- trie generation by means of substitution is no longer

one by two tiles only (although only two shapes of tiles occur).
But the way we have found it differs, wherefore we invite those who are interested in the
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Fig. l. The quasiperiodic tilings Tj(~ and Tj(~~

Fig. 2. The quasipenodic tilings Pl~~ and P°~~. The patches shown
are exact deflations of octag-

onally resp. dodecagonally shaped start configurations.

substitutional point of view to have a look into the Appendix. Let us start here with another

8-fold tiling, the tiling Tj(~ which is shown in figure 1. This tiling can be derived from the

4D root lattice D4 by the projection method [15]. It has a local deflation and inflation and

possesses locally derivable matching rules [loi. On the other hand, the full local information
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Fig. 3. The local denvation of P~~~ from Tj(~.

Fig. 4. The decoration fuie for Pl~l See text for additional explanation.

requires the knowledge of the edges in the tiling, the set of vertex sites atone is insuliicent.

In the present context, our task is to introduce additional points which complete trie local

information encoded in trie points. Let us describe one possible procedure.
Firstly, one gets rid of the edge-inherent additional information by introducing new vertices.

Especially hexagonal patches, compare figure 1, consisting of one acute triangle in the middle

surrounded by two oblique ones at the cathedes and a flat triangle at trie base, bave to be

decorated by new vertices in such a way that trie decomposition by those edges is uniquely
reflected within their sites. Therefore, we introduce quite near the base of the acute triangle an

additional vertex. To get more handsome tiles we decorate the cathedes of the acute triangle
with two additional vertices. The resulting derivation is shown in figure 3, its locality is obvious.

Next, we prove trie local invertibility of this derivation. In order to do this, we introduce an

orientation of trie squares. Clearly, this orientation must be a local one: this is shown in figure
4. Just one ambiguous case remains: The patches of the lower row of figure 4 (without the

lateral rhombus) may occur succeedingly up to three times in a line. In that case, it suliices

to demand that the muer patch should be directed in the same way as the outer ones.

Now, having decorated trie squares, trie backward direction becomes easy: it is just trie rule

shown in figure 5. It is obvious that trie fiât triangles are regained by these rules
as well.

The resulting 8-fold tiling P(~)
is again face-to-face and consists of squares and 45°-rhombi

only. As an immediate consequence, this tiling is locally derivable from its vertex sites alone.

Put together with trie results of [loi one finds: trie tiling P(~) bas perfect matching rules as

well. Furthermore, trie complete information is localy denvable from trie set of vertex sites.
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Fig. 5. The remaining derivation from P~~l back to Tj(~~~~

A B C

Fig. 6. The acceptance domains for trie tiling P'~. The tetrasymmetric one occurs in two orienta-

tions. Domains A and B
are

situated around interstitials l'holes',
more precise: A around those with

integer Euclidean coordinates), whereas C is the one aroqnd lattice points. The projection of a unit

vector ez would point from the lower of trie left vertices of A, for example, towards the central point.

Especially:

The set of vertices of P(~) bas perfect matching rules.

For trie sake of completeness, we will give trie acceptance domains for the new tiling described

above, where we use an embedding into the root lattice D4, the 4D checkerboard lattice [15].
Starting from the primitive hypercubic lattice with the standard orthonormal basis vectors e~,

we can write trie lattice as

D4
=

L xiei l'xi + °12) 1.

In order to preserve trie 8-fold symmetry within trie 2-dimensional subspaces, trie projector
into trie physical space is chosen as

£ 1

~
2 2

~
2

II 1 £ 1 '

~
2 2

~

and for trie projector into trie intemal space trie second and fourth column bave to be multiphed
by -1.

Figure 6 shows trie acceptance domains of trie tiling P(~~ The small octagon IA) and

the inner squares of trie tetrasymmetric ones (B), defined by the concave vertices of them,

correspond to the original tiling Tj(~, compare [15].
The corresponding vertex configurations are shown in Figure 1. Trie vertices Al A3 stem

from trie small octagonally shaped acceptance domain A, and are, therefore, deducible from
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Fig. 7. The 9 vertex configurations of the tiling Pl~l.

Table I. Relative frequencies of occurrence for vertex configurations vithin the octagonal
tiling P(~),

=
1 + và is the silver mean.

Vertex [ Frequencyofoccurrence

Al 1/2À~
=

(29 12À) /2 m 1. 47187 %

A2 (1 + À) /2À5
=

(-41 +1?1) /2
m 2. 08153 %

A3 (1 + À) /2À~
=

(Ii il) /2 m 5. 02526 %

Bl 1/2
=

1/2
m 50. ooooo %

82 1/À~
=

-12 + 5À m 7. 10678 %

83 1/2À~
=

(29 12À) /2 m 1. 47187 %

84 1/2À~
=

(-12 + 5À) /2 m 3. 55339 %

Cl (1+ À)/2À~
=

(Ii 7À)/2
m 5. 02526 %

C2 +
=

-7 + 3À m 24. 26407 %

trie corresponding vertex figures of Tj(~, Bl 84 are mostly in one-to-one correspondence to

those of Tj(~, just some vertices of type Bl occur additionally, nanlely those new vertices, in

comparison to Tj(~, which are located at trie edges of trie acute triangles. Their sites do occur

in the deflations of Tj(~ This is why trie fourfold symmetric acceptance domains B do appear

enlarged with respect to Tj(~ Worth noticing is the fact that the relative frequency of the

vertices of type Bl within tiling P(~) is exactly 50%, cf. table I. The last two vertex config-

urations are those which occur, with respect to Tj(~, additionally within the acute triangles.
Their acceptance domain is the larger octagon C.

3. The twelvefold case:
P(~~)

Just as before, we transformed a D4-tiling by introducing new vertex sites. Again we started

with a hexagonal patch, this time consisting of an acute triangle m the middle, two flat ones

at its cathedes and a small equilateral triangle ail of them dearly from the twelvefold tiling
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Fig. 8. The local derivation of Pl~~l from Tj(~l

Fig. 9. The acceptance domains of the tiling Pl~~l. The square occurs in three orientations. It

is
situated around interstitials l'holes'), whereas the other one occurs around lattice places. The

projection of
a unit lattice vector would point, for example, from

a vertex of the square towards its

center.

T)(~~ [15], compare figure 1. Here, a single additional vertex site at the circumcenter of the

acute triangles was enough to complete trie local information. Trie vertex points of the tiling,
P(~~), obtained this way tum out to be the union of the vertex sites of Tj(~~ and those of

a tiling of Niizekilmitani and (independently) Gàhler [12]. Therefore the vertex acceptance
domains are those of these tilings, cf. figure 9. Up to this point, this was already shortly
mentioned in trie appendix of reference [loi.

Now we have to prove mutual local derivability. Trie direction from Tj(~~ to P(~~) is an easy

tile-tc-tile derivation shown m figure 8. Due to the fact that the tiling Tj(~~ is already defined

by the set of acute triangles atone, 1-e- all the edges of trie other tiles are given from those of

the acute triangles, only these triangles need to by regained for trie other direction. This looks

diflicult, because figure 8 indicates that the acute triangles as well as the small equilateral ones

result in the saule tiles. But again, due to the mentioned property of Tj(~~, it is dear that

the small triangles of Tj(~~ have a unique surrounding by three doute triangles. This '3-star'

patch will be transformed into a 'pyramid' of four (small) triangles. So it becomes dear that,
whenever such a pyramid configuration occurs m P(~~), trie central one does not stem from an

acute triangle.

Like in trie 8-fold case, we thus get a tiling with only one edge-length. The latter is the second

shortest distance between vertex sites. Only the small diagonal of the rhombus is shorter, but
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Fig. lo. The vertex configurations of tiling P°~l. Vertices 1 through 3 correspond to the dodecago-
nal acceptance domain, whereas the others belong to the quadratic one(s).

no bond. On the other hand, this point distance occurs only between two vertex sites if these

are connected by an edge, except for trie single case that two rhombi are joined together. From

trie hst of vertex configurations, shown in figure la, it is obvious that more than two rhombi

are not allowed to join. Therefore, we bave to handle just this single exceptional patch. Here,
trie presence of trie common rhombus vertex in between is enough to rule out that case. Thus,
trie complete information on trie tiling P(~2)

is contained in its vertices. Having shown trie

equivalence to trie tiling Tj(~~ as well and using again trie results of [loi,
we find:

The tiling P(~~) bas perfect matching rules and its complete information is locally deriv-

able from trie set of vertex sites.

We present, in figure 9, trie acceptance domains for P(~~~. Trie quadratic domains correspond

to Tj(~~, trie dodecagonal one to trie tiling of references [12, 4]. In figure 10, trie corresponding

vertex configurations are shown. Trie first three configurations correspond to trie new vertices,

I.e., their acceptance domain is trie dodecagonal one, trie one of trie (sub-)tiling shown in [12, 4],

whereas trie others correspond one-to-one to those of Tj(~~ [15]. From trie relative size of trie

dodecagonal acceptance domain with respect to trie quadratic ones trie circumradius of trie

dodecagon equals trie edge of trie sqare it becomes clear that trie vertices 1 3 bave a total

frequency of occurrence of 50%. (This correlation between relative size of acceptance domains

and frequencies is due to trie minimal dimension of embedding).
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Table II. Relative freque~lcies of occurrence of vertex configurations with1~l the dodecago~lal

til1~lg P(~~~,
=

2 + Và is trie platinum number.

Vertex [ Frequencyofoccurrence

15 m

2 (-26 + 7Q)/2 m 6. 21778 %

3 3(4 Q)/2 m 40. 19238 %

4 (4 Q)/2 m 13. 39746 %

5 -26 + 7g m 12. 43556 %

6 (56 15Q)/2 m 0. 96190 %

7 -26 + 7Q) /6 m 2. 07259 %

8 (-41 + llg)/2 m 2. 62794 %

9 (45 12g) /2 m 10. 76952 %

10 -26 + 7Q)/6 m 2. 07259 %

II m 5. 66253 %

4. Concluding remarks.

For eight- and twelvefold symmetry, we presented a construction of relatively simple quasiperi-
odic tilings which possess perfect matching rules inherently, 1-e-, in such a way that these rules

ca~l be locally derived from trie set of vertex sites atone. Trie concept of mutual local derivabil-

ity was central in trie chain of arguments, giving simultaneously trie relation to other tilings
that are already known and trie method to construct trie acceptance domains systematically,

We bave not focussed explicitly on deflationlinflation properties of these tilings and their

local nature. But this is another feature
we get for free from trie equivalence to trie D4-

tilings [15]. Stated explicitly:

The tilings P(~~ and P(~~~ both possess local deflation and inflation property, 1-e- trie

deflated as well as trie inflated tilings are locally derivable from trie original ones.

A discussion of that will be given in trie Appendix.
Constructively, we know that local deflationlinflation symmetry and locally derivable match-

ing rules are compatible with 8-, 10-, and 12-fold symmetry (cf. [loi for trie 10-fold case). It

is possible to construct simple discrete point set representatives. Now, one obvious question is

whether this is an accidental coincidence hnked to quadratic irrationalities. Preliminary inves-

tigations of tilings with 7-fold symmetry [22] and several general results on arbitrary symmetry

groups and their relation to algebraic integers [14] indicate that this is not trie case: one may

expect trie tripel "quasiperiodicity local deflationlinflation perfect matching rules" to be

much more pertinent than it was expected so far, although we admit that trie consideration of

suitably closed tiling ensembles might be necessary.
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Fig. Il. Local substitution rule for Pl~l. It can be shown that the decoration used is locally
derivable from the bare tiling. For P°~l

see text.
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Appendix.

Let us comment on how trie global inflation operates on trie set of vertex sites, which in turn

can be read from trie vertex acceptance domains.

It lias been shown that all these domains are star-shaped with respect to their centers. IA
set is called star-shaped if it contains a point such that each line from this point to any other

point of trie set lies completely inside trie set). Trie centers, however, are trie possible fixed

points of inflation/deflation transformations. Consequently, a global inflation of these patterns,
corresponding to a shrink of trie domains towards trie fixed points up to a permutation
between congruent domains yields smaller domains lying completely inside trie original

ones, I.e., considering trie physical space of trie tilings, all vertex sites of trie inflated tilings
coincide with some sites of trie original tiling.
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Now, let us give a brief discussion of trie local (de-)composition rules, 1-e- trie substitutional

aspect of trie tilings P(~~/P(~~~. In reference [loi trie local (de-)composition rules bave been

shown for trie tiles of Tj(~ and Tj(~~. Hence, starting with some patch in P(~)/P(~~), one

applies trie local derivation rule towards Tj(~ /2j(~~ first, then trie (de- )composition rule there,
and finally trie local derivation rule back again.

Because of being tile to tile, trie derivation rule yields, in trie case of P(~~), a rather trivial

transformation of trie substitution rules of Tj(~~ given in reference [loi: The triangle which

corresponds to trie small triangle of Tj(~~decomposes into trie shield; trie other one which

corresponds to the acute triangle of Tj(~~decomposes into two shields, two triangles of trie

same kind and an additional rhombus; trie shield decomposes into one triangle of trie first

kind and three of trie latter; and, due to trie fact that this decomposition rule is Dot shape
preserving, trie rhombus will vanish.

An analogous procedure for trie 8-fold case results, if formulated as simple as possible, in

a local decomposition rule for two locally distinguishable kinds of oriented rhombi and two

(again distinguishable) rectangular triangles, as shown in figure II. Therefore, P(~) yields a

four tile substitution rule. Thereby, trie squares are to be devided along trie orientating arrows,
introduced in section 2. By trie way, that arrow stems from trie decoration of this dividing

line. Thus, part of trie proof for trie locality of trie decoration introduced here has already been

given. What remains is an as easy exercise.

Clearly, in trie 8-fold case trie deflation factor is À; in trie 12-fold it is fi.
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