LETTER TO THE EDITOR

Quasiperiodic icosahedral tilings from the six-dimensional bcc lattice

Z Papadopolos, R Klitzing and P Kramer
Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

Received 3 December 1996

Abstract. The cell geometry of the six-dimensional bcc lattice is investigated. Via klotz construction two different classes of icosahedrally projected quasiperiodic tilings are defined. For both cases we determine the acceptance domains of tiles and give a detailed description of the geometry of all tiles.

1. Introduction

As has been shown by Rokhsar et al [1], there exist only three icosahedral modules (in \(\mathbb{R}^3\)) of rank 6. They can be obtained by icosahedral projection from the six-dimensional (6D) primitive cubic lattice \(P\), i.e. \(Z^6\), the face-centred cubic lattice \(2F\), i.e. the root lattice \(D_6\), and the body-centred cubic lattice \(I\) (reciprocal to \(2F\)), i.e. the weight lattice \(DR_6\), respectively. The icosahedral projection from 6D to 3D space is defined by a particular embedding, \([312_+^+]\), of the 3D faithful representation of the symmetry group, \(Y_h\), of the icosahedron in the 6D representation of the higher-dimensional (6D) lattice, \(Z^6\), \(D_6\) or \(DR_6\), see [2–4]. The 6D space splits as \(E^6 = E^\parallel \oplus E^\perp\), where \(E^\parallel\) is the representation space of \([312^+]\), the (physical) space of the quasiperiodic tiling, and \(E^\perp\) is the representation space of \([312^-]\), the (internal) space of the coding [3, 5]. In the projection procedure from the 6D lattice we define two local isomorphism (LI) classes of tilings [3, 6], \(T\) and \(T^*\): the tiles of the LI class \(T\) in \(E^\parallel\) are icosahedrally projected 3D boundaries of the Voronoi cell \(P_1(3)\) and are coded by icosahedrally projected dual boundaries \(P^*_1(3)\) within \(E^\perp\), cf [5]; the tiles of the LI class \(T^*\) are the icosahedrally projected 3D boundaries of the Delaunay cells \(P^*_1(3)\), coded by \(P_1(3)\). Note that the tilings \(T\) and \(T^*\) coincide only in the case of \(Z^6\). Quasiperiodic tilings obtained by icosahedral projection from \(Z^6\) and from \(D_6\) have been studied extensively [2–4, 7–9].

2. To the tiles and tilings \(T^{(I)}\) and \(T^{*(I)}\)

We now consider quasiperiodic tilings obtained by icosahedral projection from the weight lattice \(D_6^K\). By various methods [10, 11] we have determined, in 6D, the hierarchy of boundaries of the Voronoi cell, a polytope with Schlaffi symbol \(\{13\}_{333}\), and of the Delaunay cells, one representative of which being the convex hull of the 16 points \(\{0, 0, \pm 1, \pm 1, 0, 0\} \cup \{\pm 1, \pm 1, \pm 1, 0, 0\}\), more details can be found in table 1. Here we only describe the 3D boundaries \(P(3)\) and \(P^*(3)\). The 3D boundaries of the
Table 1. The incidence matrices of the 6D topology for the Voronoi cell, V, (above) and one representative Delaunay cell, D, (below). Entries N_{ij} are to be read as follows: each i-boundary coincides with N_{ij} j-boundaries; N_{ii} counts the total number of i-boundaries. The boundaries are subdivided into different orbits with respect to the pointgroup.

<table>
<thead>
<tr>
<th>V</th>
<th>0D</th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
<th>4D</th>
<th>5D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0D</td>
<td>160</td>
<td>36</td>
<td>8</td>
<td>24</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>1D</td>
<td>2</td>
<td>1440</td>
<td>42418</td>
<td>184</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2D</td>
<td>3</td>
<td>1920</td>
<td>55</td>
<td>55</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3D</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>240</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4D</td>
<td>8</td>
<td>24</td>
<td>32</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>5D</td>
<td>20</td>
<td>90</td>
<td>60</td>
<td>60</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>0D</th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
<th>4D</th>
<th>5D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0D</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>1D</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2D</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>296</td>
<td>296</td>
<td>2</td>
</tr>
<tr>
<td>3D</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4D</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>5D</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Voronoi cell, $P(3) \subset V(0)$, are 1200 tetrahedra (T) and 960 octahedra (O), all with edges of the same length $1/\sqrt{2}$ (scaled such that the primitive basis of Z^6, e_i, $i = 1, \ldots , 6$, obeys $(e_i, e_j) = \delta_{ij}$). There are 10 congruent Delaunay cells, $D^{(j)}$, $j = 1, \ldots , 10$. Each one has, as 3D boundaries $P^*(3) \subset D^{(j)}$, 96 pyramids T^* and 144 tetrahedra O^*. Each pyramid T^* has, as a base, the square of edge length 1, the lateral edges have length $\sqrt{3}/2$.

The icosahedrally projected Delaunay cells $D^{(j)}_\perp$ are the vertex windows or acceptance domains for the tilings in the LI class $T^{(j)}$. $D^{(j)}_\perp$ has the shape of the scalenohedron with the symmetry D_{3h} (see figure 1) and the class $T^{(j)}_\perp$ does not contain a non-singular tiling with global icosahedral symmetry†. Moreover, it does not even contain a non-singular tiling with global D_{3h} symmetry. The tiles of $T^{(j)}_\perp$ are $P(3)$, i.e. icosahedrally projected tetrahedra T^*_\perp and octahedra O^*_\perp. The tetrahedra T^*_\perp show five forms. One of them is degenerate, which we can simply remove here because they are not needed for the cell construction [5]. The other four, T^*_\parallel, $i = 1, \ldots , 4$, coincide with the tiles A^*_\parallel, B^*_\parallel, C^*_\parallel, and D^*_\parallel of the

† Even a singular one is impossible if the 10 translation classes are distinguished, as the group that generate $D^{(j)}_\perp$ is the Weyl group of the diagram [11] $A_3 \times A_3$, so does not allow the embedding of Y_5. On the other hand, no tile has icosahedral symmetry.
Figure 1. The Delaunay cell $D_{\parallel}^{(1)}$ in two board projection.

Figure 2. The tiles of $T(I)$, $O_i\perp (i=1,...,4)$, in an orthogonal projection.

tiling [3] $T^{*(2F)}$ (scaled by a factor $\frac{1}{2}$). The octahedra $O_i\parallel$ appear in five forms, again one degenerate; the other $O_i\parallel$, $i=1,...,4$ are shown in figure 2. The shapes of them are all double pyramids, point symmetric with respect to the centre of the base. All edges are parallel to 2-fold symmetry axes of an icosahedron, and only two different edge lengths occur, $2 = \frac{1}{2}\sqrt{2/(\tau + 2)}$ and $\tau \cdot 2$, τ the golden ratio.†. The generating pyramids of $O_2\parallel$ and $O_4\parallel$ have rectangular bases and small/long lateral edges, respectively; those of $O_1\parallel$ and $O_3\parallel$ are oblique and based on a small/big square, respectively.

The icosahedrally projected Voronoi cell $V_{\perp}(0)$ forms a dodecahedron with edge length $\tau \cdot 2$. It is the vertex window (or acceptance domain) of the LI class $T^{*(I)}$. This class

† Note that the smallest inflation factor of the icosahedrally projected D_6^R is τ, just as for D_6.
Figure 3. The unfolded tetrahedra $O^*_{i\parallel}, i = 1, \ldots, 4$.

contains (up to translations) one tiling with global icosahedral symmetry. The tiles are four non-degenerate pyramids $T^*_{i\parallel}, i = 1, \ldots, 4$, coinciding with four out of the six tiles [4] of $T^{(2F)}$, and, in addition, four non-degenerate tetrahedra, $O^*_{i\parallel}, i = 1, \ldots, 4$ (the latter are shown in figure 3). All edges (of $T^*_{i\parallel}$ and $O^*_{i\parallel}, i = 1, \ldots, 4$) are either parallel to 3-fold directions of an icosahedron (—•—) with two different edge lengths $\tau \cdot \tau^3 = 1/2 \sqrt{6/(\tau + 2)}$ and $\tau \cdot 3$, or parallel to 5-fold directions (———) with three different edge lengths $5 = 1/\sqrt{2}, \tau^{-1} \cdot 5$ and $\tau \cdot 5$. Within figure 3, scalings by powers of τ with respect to a standard length 5 and 3 are marked.

3. Conclusion

The icosahedral quasicrystals related to the P- and $2F$-module, icosahedrally projected from the Z_6 and D_6 lattice, respectively, have been experimentally observed (see for example [12, 13]). No quasicrystals related to the I-module, projected from the D_{12}^R lattice have been observed so far. Nevertheless, the above introduced new classes of tilings $T(I)$ and $T^*(I)$ are also of interest for further investigations as mathematical structures.

References

Letter to the Editor

