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Abstract 

Aperiodic crystalline structures, commonly called quasi- 
crystals, display a great variety of combinatorially possi- 
ble local configurations. The local configurations of first 
order are the vertex configurations. This paper investi- 
gates, catalogues and classifies in detail the latter in the 
following important two-dimensional cases: the Penrose 
tiling, the decagonal triangle tiling and some twelve- 
fold tilings, including the patterns of Stampfli, GS.hler, 
Niizeki and Socolar, as well as the square-triangle and 
the shield patterns. The main result is a comprehensive 
study of the three-dimensional primitive icosahedral 
tiling in its random version. All its 10 527 combinato- 
rially possible noncongruent vertex configurations are 
constructed, coded, listed and classified. Methods for 
coding and representation of local configurations by 
formulae and diagrams, in particular those of Schlegel, 
are discussed. The paper also describes the algorithm 
used to generate them. The formal classification of local 
configurations by the characteristic integers rank, degree 
and order is also discussed. 

1. Introduction 

Local configurations in random tilings should be of 
interest to quasicrystallographers, as well as to crystallo- 
graphers and quasicrystallographers. In this Introduction, 
we try to give some convincing arguments in favour of 
this statement and we attempt to support them by the 
content of this paper. 

Almost a decade ago, Shechtman, Blech, Gratias & 
Calm (1984) and almost simultaneously Ishimasa, Nissen 
& Fukano (1984) discovered, recognized and announced 
the existence of novel aperiodic crystalline phases in 
the A1-Mn and Cr-Ni systems, respectively. These were 
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promptly and for very good reasons dubbed quasicrystals 
(Levine & Steinhardt, 1984). 

Since then, a plethora of quasicrystalline systems has 
been found (Jari6, 1990; Nissen & Beeli, 1990; DiVi- 
cenzo & Steinhardt, 1991; Bancel, 1991). The micro- 
scopic structure of these phases has ever since been a 
subject of intensive and extensive research, both exper- 
imental and theoretical. Various structural models have 
been suggested in different instances and by different 
authors. The models fall roughly into three classes: (1) 
the quasiperiodic tiling model (Kramer & Neff, 1984; 
Levine & Steinhardt, 1984; Duneau & Katz, 1985; 
DiVicenzo & Steinhardt, 1991; Katz & Duneau, 1986; 
Socolar & Steinhardt, 1986); (2) the orientationally 
ordered polyhedral glass model (Jari6, 1990; Nissen 
& Beeli, 1990), commonly and imprecisely called the 
'icosahedral glass' model; (3) the random tiling model 
(Elser, 1985; Widom, Strandburg & Swendsen, 1987; 
Jari6, 1990; Henley, 1990, 1991; Nissen & Beeli, 1990; 
Tang, 1990; Bancel, 1991; DiVicenzo & Steinhardt, 
1991). 

It seems that phases with the primitive icosahedral 
structure, represented by A1-Cu-Li, may be adequately 
described by the random tiling model, whereas the face- 
centred icosahedral phases, represented by A1-Cu-Fe, 
are apparently fairly good realizations of a quasiperiodic 
tiling. Important evidence for the relevance of quasiperi- 
odic tiling models for the octagonal, decagonal and do- 
decagonal phases comes from high-resolution transmis- 
sion electron microscopy (Nissen & Beeli, 1990, 1993; 
Hiraga, 1991), X-ray diffraction (Steurer & Kuo, 1990) 
and scanning tunnelling microscopy (Kortan, Becker, 
Thiel &Chen, 1990; Becker & Kortan, 1991). 

The wealth of known quasicrystalline phases and 
those yet to be discovered opened up a new and im- 
mensely rich world of aperiodic ordered solids. We 
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must expect to find an extremely wide, intricate and 
fairly dense spectrum of ordering in this realm. One of 
its unifying features is the established physical reality 
of symmetries forbidden by the dogma of classical 
crystallography in spite of past and present attempts to 
explain away experimental evidence (Hardy & Silcock, 
1955/56; Sastry, Suryanarayana, Van Sande & Van Ten- 
deloo, 1978; Pauling, 1985). In order to understand these 
aperiodic phases, we usually surmise the existence of 
some ideal underlying structure and try to investigate 
the deviations therefrom. This is one avenue leading to 
the study of defective local configurations. 

From a quite different but by no means contradictory 
point of view, we assume only the existence of a few 
building blocks and try to assemble them in every 
possible way. Thus, we are again led to the study of 
all combinatorially possible local configurations. In this 
approach, there are no defective configurations. Rather, 
every possible local configuration is part of the global 
structure. Since there is no obvious limitation to the 
symmetry of the building blocks, the resulting structure 
is expected to inherit at least some features of this 
symmetry. For the study of aperiodic ordered structures, 
the investigation, cataloguing and classification of local 
configurations should be of interest. 

In § 2, we explain our intentions using as example the 
well known Penrose tiling. §§ 3 and 4 deal with instances 
of planar tilings, in particular the decagonal triangle 
tiling and some twelvefold tilings. [The octagonal case 
is left for diligent readers as an easy exercise. They 
may check their result for one interesting example, the 
Ammann-Beenker tiling, with the published literature 
(Baake & Joseph, 1990).] § 5 is the core of this paper. 
It is devoted to the three-dimensional primitive icosa- 
hedral tiling. § 6 clarifies our methods of coding and 
representation of local configurations while § 7 explains 
the algorithm used to generate them. § 8 deals with the 
formal classification of local configurations. Some minor 
technical topics are deferred to the Appendix to avoid 
distraction. 

2. The random rhombic Penrose tiling 

We start with the random rhombic Penrose tiling. This 
well known example will serve as a warm-up exercise, 
as well as a paradigm of things to come. 

The tiles are the two bare (i.e. undecorated) Penrose 
rhombi with equal sides a: a large (or thick or fat) kind L 
with acute angle 27r/5 and a small (or thin or skinny) kind 
S with acute angle 7r[5. We construct all combinatorially 
possible local configurations of order 1, in other words, 
all vertex configurations. That amounts to partitioning 
the full plane angle around a node into integer multiples 
of an angle unit w, determined by the point symmetry 
of the tiling. In other words, we perform an ordered 

partition of a natural number, the count s, into a set 
of given natural numbers S = { s l , . . . ,  sk} ,  sometimes 
subject to certain obvious constraints. The numbers si 
are the internal angles of the tiles in units of w, so 
they are convenient labels for the possible corners. It 
is expedient to list the numbers si in descending order, 
that is, to have si >_ sj  if i < j .  

In our case, w = 7r/5, s = 10, k = 4, and S = 
14,3,2,1]. First, we perform the partition without order- 
ing; thus we get k-tuples of integers tr = { a l , . . . ,  ak }, 
satisfying 

k 

s = ~ ~risi, a~ e No. 
i = 1  

The vertices are classified by the k-tuples a into classes 
o- k of the same summary composition, ni  I . . .  % , a term 

borrowed from chemistry. In the present instance, we 
have 

[ ] = 2  × × [ ] +  1 × N + 0  × m 
= . . .  etc., 

whence we get the composition formulae 422, . . .  etc. 
Sometimes it is more expedient to write out the k-tuples 
o" themselves, { 2,0,1,0 I, . . .  etc. 

Next, we permute the elements within the composition 
classes with repetition and without a fixed starting point. 
Thus, we gain all isomers of the same composition. The 
result is a complete list of all vertex configurations of 
the given tiling. For the random rhombic Penrose tiling, 
it is shown in Fig. 1 and listed in Table 1. 

Each configuration has a multiplicity, i.e. it may occur 
within the pattern in a number of different orientations, 
determined by the fundamental symmetry of the tiling. 
Some of these orientations may be indistinguishable. The 
vertex list includes the symmetry and multiplicity of 
the vertices (cfi Table 1). In particular, some vertices 
have mirror symmetry, while others do not. The latter, 
in chemical parlance, show enantiomorphy, i.e. have 
different left and fight enantiomers. In our example, we 
have, up to rotations, 75 vertex configurations. Among 
these, there are 21 enantiomorphic pairs. Thus, ignoring 
rotations and reflections, we are left with 54 configura- 
tions. 

Out of these vertex configurations, only 16 occur in 
the class of perfect generalized Penrose tilings although 
never do all 16 appear in one single tiling. Only a 
single one of these, the 'cocktail', has different enan- 
tiomers. We are naturally led to classify all possible 
configurations with respect to their deviation from the 
perfect tiling. This is done by means of two characteristic 
integers: degree and rank (Ben-Abraham, Baake, Kramer 
& Schlottmann, 1993). The degree g is the maximum 
dimension of a facet shared by such subconfiguratious 
that cannot occur in the ideal tiling. For completeness, 
the degree of a regular vertex configuration is defined as 
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-1 .  The rank r is the dimension of the dual overlap if 
it exists. If it does not exist, the configuration is strictly 
forbidden or prohibited and is assigned a rank of - 1. The 
degree g of the random rhombic Penrose tiling vertices 
is also listed in Table 1. 

We come now to the question of representing the 
vertex configurations. Of course, the most intuitive way 
to represent them is to depict them explicitly, as is 
done in Fig. 1. One may save some space and effort by 
showing only the links emanating from the vertex node. 
However, it is clear that such a representation is rather 
wasteful of space, time and effort and that it becomes 
awkward in three dimensions and impossible in even 
higher dimensions. Moreover, the pictorial representa- 
tion is hardly suited for data processing. Therefore, some 
reasonable coding is necessary. 

Fig. 1. Vertex configurations of the random rhombic Penrose tiling. 

Table 1. Vertex configurations of the random rhombic 
Penrose tiling 

For  the mult ipl ic i t ies ,  we  have  g iven  or ien ta t ions  and  enan-  
t i omorph ie s  separate ly .  T h e  conf igura t ions  m a r k e d  wi th  an  as- 
ter isk  occu r  a lso as regular conf igura t ions  wi th in  the class o f  
per fec t ,  generalized Penrose  filings. 

Formula Symmetry Multi- Deg [ 
Partition H-M ] Sch plicity g 

{2 ,0 ,1 ,0}  1 422 m Cs 10.1 -1 

{ 2 , 0 , 0 , 2 }  2 4212 m Ca 10.1 1 
3 4141 mm2 C2v 5.1 1 

{1 ,2 ,0 ,0}  4 432 m C8 10.1 -1 

{ 1,1,1,1 } 5 4321 1 C, 10-2 1 
6 4312 1 C1 10.2 0* 
7 4231 1 C1 10.2 1 

{ 1,1,0,3} 8 4313 1 C1 10.2 1 
9 41312 1 C1 10.2 1 

{1 ,0 ,3 ,0}  10 423 m Ca 10.1 -1 

{ 1,0,2,2} 11 42212 1 C1 10.2 1 
12 42121 1 C1 10-2 1 
13 42122 m Ca 10.1 0 ° 
14 41221 m C8 10.1 1 

{1 ,0 ,1 ,4}  15 4214 1 C1 10-2 1 
16 41213 1 C1 10.2 1 
17 412212 m Ca 10.1 1 

{1 ,0 ,0 ,6}  18 : 416 m C~ 10-1 1 

{ 0, 3, 0,1 } 19 331 m C8 10-1 0* 

{0 ,2 ,2 ,0}  : 20 3222 m Cs 10.1 1 
21 3 2 3 2  ram2 C2v 5.1 1 

{0,2 ,1 ,2}  22 32212 1 C1 10.2 1 
23 32121 m C~ 10-1 -1 
24 32312 m C~ 10.1 1 
25 32131 1 C1 10-2 1 

{0 ,2 ,0 ,4}  26 3214 m C8 10-1 0 
27 31313 m C8 10.1 0 
28 312312 mm2 C2v 5.1 0 

{0 ,1 ,3 ,1}  29 3231 1 C1 10.2 1 
30 32212 1 C 1 10.2 1 

{0 ,1 ,2 ,3}  31 32213 1 C1 10-2 1 
32 321212 1 C1 10-2 1 
33 321221 1 C1 10-2 1 
34 32132 m C8 10.1 1 
35 312212 1 C1 10.2 0 
36 312121 m Cs 10.1 0* 

{0 ,1 ,1 ,5}  37 3215 1 C1 10.2 1 
38 31214 1 C1 i 10"2 0 
39 312213 1 C1 [ 10-2 0 

{0 ,1 ,0 ,7}  40 317 m C8 10.1 0 

{0 ,0 ,5 ,0}  41 25 5m Csv 2-1 -1 

{0 ,0 ,4 ,2}  42 2412 m [ C8 10.1 -1 
43 23121 m C8 10.1 0 
44 221221 mm2 C2~, 5.1 0 

{0 ,0 ,3 ,4}  45 2314 m Ca 10.1 0 
46 221213 1 C1 10.2 0 
47 2212212 m C8 10.1 -1 
48 2121212 m Ca 10.1 0* 

{ 0 ,0 ,2 ,6} 49 2216 m C8 10.1 0 
50 21215 m C, 10.1 0 ° 
51 212214 m C, 10.1 0* 
52 213213 mm2 C2v 5.1 0 

{0,0 ,1 ,8}  53 218 m Cs 10.1 0* 

{0,0,0,10} 54 11° lOmm Clo~, 1.1 0* 
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Up to now, we have coded the vertices simply by 
listing the participating comers in the appropriate order, 
usually counterclockwise, around the node. The comers 
were, in turn, represented by their angle numbers si. We 
refer to this representation as the direct code. 

The direct code is excellent in two dimensions and its 
caricature works well in one dimension. Even in higher 
dimensions, it still keeps working for the summary 
composition formulae but it fails to describe the isomers. 
Hence, we are forced to introduce a more elaborate 
scheme. This scheme, while being rather redundant in 
two dimensions, shows its power in higher dimensions 
by being fairly versatile and universal. 

To characterize a vertex, we explicitly list its links 
in terms of the relevant star vectors 4-e~, for which 
we usually adopt the shorthand notation h, h. A tile is 
represented by its spanning vectors enclosed in some 
kind of brackets. To make the recognition easy, it is 
worthwhile to apply two redundant but very useful 
strategems. We distinguish different kinds of tiles by 
different kinds of brackets. Moreover, we decorate the 
brackets by a subscript si to designate explicitly the 
comer entering the vertex. In this coding, the order of 
the entries is irrelevant. 

In our example, the random rhombic Penrose tiling, 
we have the double star 4-eh (h = 1, . . .  ,5), abbreviated 
to 1 , . . .  ,5,i , . . . ,5. The fat tiles, L, are coded by square 
brackets [ ]; the skinny ones, S, by round brackets, i.e. 
parentheses, ( ) .  So, for example, the code for the left 
cocktail, 4213, becomes 

(35)415 i ]2( i4)1 [4313. 

In this instance, the tiles happen to be conveniently listed 
in their correct order. But the order does not matter and 
in three dimensions there is, of course, no ordering at all. 

3. The triangle tiling 

The triangle tiling (Baake, Kramer, Schlottmarm & 
Zeidler, 1990a,b,c) is a prototype for all decagonal 
filings. Its tiles are the two isosceles 'golden' triangles 
(see Fig. 2) obtained by cutting up a regular pentagon 
along two of its diagonals. The dimensions are a base 
of length a and sides of length "ra for the acute triangle 
Ac; vice versa for the obtuse triangle Oh. Here ~- = 
(1 + 51/2)/2 is the golden ratio. 

Again, the count is s = 10 and hence the angle unit 
w = 7r/5. Thus, Ac has the comers 1,2,2, while Ob has 
comers 3,1,1. In order to distinguish the comers 1 of 
the two triangles, we call the top comer of the acute 
triangle i. Consequently, k = 4 and S = 13,2,1,i }. 
Vertices of the tiling have to obey the constraint that 
the tiles meet face to face in the perfect as well as in 
the random pattern. There are 9 + 2 = 11 regular vertex 
configurations (Fig. 3). 

The random pattern has altogether 120 + 78 = 198 
such configurations. They are listed in Table 4, in the 
Appendix. 

1 2 8 

4 5 6 

7 8 9 
Fig. 3. The regular vertex contiguradons of the triangle tiling. 

(a) 

1 3 4 

Fig. 2. The golden triangles. 

5 6 7 
(b) 

Fig. 4. The correspondence of (a) the Robinson vertices and (b) the 
kite-dart version of the Penrose tiling. 
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The same two tiles can be found in the Robinson 
decomposition of the Penrose tiling, also called the 
Robinson tiling (Robinson, 1975). This tiling is different 
from the triangle tiling (Baake, Schlottmann & Jarvis, 
1991) but of course the random versions are the same. 
There are seven regular vertex configurations, all mirror 
symmetric (Fig. 4). 

Vertex 1-17, the 'Simpleton' or 'Rhombus', has its 
node inside a decomposed Penrose rhombus of the fat 
kind L. Vertices ['21 to [-6] correspond to the rhombic 
Penrose vertices 'Pawn', 'Knight', 'North Star', 'Rook' 
and 'Bishop', in that order. Vertex [7], the 'Sun', arises 
from the three vertices 'King', 'Queen' and 'South Star'. 
It should be noted that the decorated rhombic Penrose 
tiling gives rise to three distinct Suns with different 
spots. 

It is perhaps worthwhile to remind the reader that 
the Robinson vertices arise directly from the kite-dart 
version of the Penrose tiling by bisection of the tiles 
along their mirror axes. The correspondence then is as 
follows: [I] ace, [2] queen, [ ]  king, [-4] star, []  deuce, 
[ ]  jack, []  sun [cf. Gardner (1977) or pages 537ff. of 
Griinbaum & Shephard (1987)]. 

4. The twelvefold tilings 

To discuss local configurations in the twelvefold pat- 
terns, it is most expedient to start with the Stampfli 
pattern (Stampfli, 1990; Klitzing, 1992). The tiles are 
a square Sq, an equilateral triangle T and a rhombus R, 
all having sides of the same length a. 

The count is s = 12, the angle unit w = 7r/6, the 
number of distinct corners k = 4 and the partition set 
S = {5,3,2,1 }. The Stampfli pattern has ten regular 
vertex configurations, all of them mirror symmetric 
(Fig. 6). Altogether, there are 116 + 63 = 179 possible 
vertices. They are listed in Table 5, in the Appendix. 

ball patterns belonging to the same mutual local deriv- 
ability class (Baake, Schlottmann & Jarvis, 1991) have, 
of course, related local configurations. We mention just 
a few. 

The G~hler-Niizeki pattern (Niizeki & Mitani, 1987; 
GSahler, 1988) has the same three tiles, Sq, T and R. 
Hence, in its random version it has the same full vertex 
list as the Stampfli pattern. However, the regular vertex 
configurations belong to a small subset, consisting of 
the vertices [2] to [5] in Fig. 6. 

The Socolar pattern (Socolar, 1989) has as tiles reg- 
ular hexagons H, squares Sq and rhombi R, all with 
the same side length a. Thus, we have k = 4 and 
S = 15,4,3,11. The regular vertex configurations are 
shown in Fig. 7. The full list contains 25 + 12 = 37 
vertices. It can be recovered by taking only those random 

m 

Fig. 6. The regular Stampfli vertices. 

Fig. 7. The regular Socolar vertices. 

/$15  

Fig. 5. The tiles of the Stampfli pattern. 

k/k /  I 
Fig. 8. The vertices of the random square-triangle tiling. Just the one 

consisting of squares only occurs in addition to regular ones. 
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Table 2. The regular vertex configurations of the primitive icosahedral tiling 

Vert.Cf. 1 Ori.: 120 Freq.: 2/7- TM 

(2,3,4) (1,4,6) (1,2,5) (1,3,5) 
(2,3,6) (3,4,5) 
[~,4,5] ff ,~,7 ff,~,3] ~,5,6] 
[2, 4, 5-] [2, 4, 6] [2, 3, 5-] [3, 5, 6] 
Vert.Cf. 2 Ori.: 120 Freq.: 2/7- ~ 
(5,3,4) (T,~,6) (T,~,5) (i,3,5) 
(2,3,4-) (2,3,6) (3,4,5) (3,4,5) 
[~,4,5] [~,~,7 ff,~,3] if, s,6] 
[2, 4, 6] [3, 5, 6] 
Vert.Cf. 3 Ori.: 120 Freq.: 2/7- ~z 
(2,3,6-) (2,3,4) (1,4,6) (1,2,5) 
(1",3,6) (T, 3,~) (2,3,6) (3,4,5) 
[~,4,51 [i, Ls-] [L~,6-] [L5,61 
[2, 4, 7-] [2, 4, 6] [2, 3, 5-] [3, 5, 6] 
Vert.Cf. 4 Ori.: 30 Freq.: 1/7- TM 

(1, 4, 6) (i, 2, 5) (]', 3, 6) (1, 3, 5) 
(2,3,6) (3,4,5) 
f~,4,~ $,4,5] [~,z,~ ~,~,~ 
[1, 5, 6] [2,4, 5-] [2,4,6] [2,3,7-] 
[3,4, 6-] [3, 5,6] 
Vert.Cf. 5 Ori.: 60 Freq.: 2/r  rz 

(2,3,6-) (2,3,4) (1,4,6) (1,2,5) 
(i, 3, 6--) (T, 3,S) (2, 3,4) (2,3,6) 
(3,4,5) (3,4,5) 
~,4,5] ff,~,7 ff,~,6-] ff, s,6] 
[2, 4, 6] [3, 5, 6] 
Vert.Cf. 6 Ori.: 30 Freq.: 1/7- a 

(l, 3, 5) (1, 3, 6) 
[L s, 61 [3, s, 6] 
Vert.Cf. 7 Ori.: 120 Freq.: 1/7- a 
(]-,2, 5) (]-, 3, 6) 
[2, 3, 5] ~', 2, 3] ~, 5, 6] [3, 5, 6] 
Vert.Cf. 8 Ori.: 120 Freq.: 1/7- 0 

'(2,3,4) (1,2,5) (1,3,6) (3,4,5) 
~, 4, 51 [1, 2, 3] [~, 5, 6] [3, 5, 6] 
Vert.Cf. 9 Ori.: 60 Freq.: 2/7- 7 

(5,3,4) (1,4,6) (]-,2,5) (2,3,4) 
(2,3,6) (3,4,5) 
~,4,5] ~,2, 31 ~', 3, 4-] ff, 5,6] 
[2, 4, 6] [3, 5, 6] 
Vert.Cf. 10 Ori.: 120 Freq.: 1/7- ~ 
(2,3,4) (1,4,6) (1,2,5) (3,4,5) 
~,4,5] [1,2,3] [1, 3, 4-'] [1,5,6] 
[3,~, 6] [3, 5, 6] 

Vert.Cf. 11 Ori.: 60 Freq.: 1/7- a 
(L~,6) (L~,s) 
[~,3,51 ff,~,3] [L3,4-1 ff,5,6] 
[3, 4", 6] [3, 5, 6] 
Vert.Cf. 12 Ori.: 60 Freq.: 2/7- ~s 
(i,4,6) (~,3,5) (1,3,6) (1,2,4) 
(1,2,5) (~,2,5-) (T,2,4) (1,3,6) 
(1,3,5) (T,4,6-) (1,3,5) (1,3,6) 
(2,3,6) (3,4,5) 
~, 5, 61 ~, 4, 5] [1, 5, 6] [2, 4, 6] 
[2,3,7 [3,4,6-] 
Vert.Cf. 13 Ori.: 120 Freq.: 2/7- 'a 
(i ,4,6) (T,3,5) (T,3,6) (1,2,4) 
(1,2,5) (1,3,6) (1,3,5) (~,4,g) 
(1,3,5) ( 1 ,3 ,6 ) (2 ,3 ,6 )  (3,4,5) 
[5, 5, 6] [~, 4, 5] [$, ~, 7-] [1,5, 6] 
[2,L5-] [2,~,6] [2,3,5-] [3,4,6-] 
Vert.Cf. 14 Ori.: 30 Freq.: (7-z + 1)/7- ~a 
(1,4,6) (i,3, 5) (T,3,6) (i,2, 5) 
(1,3,6) (T, 3,5) (1,3,5) (1,3,6) 
(2,3,6) (3,4,5) 
~,5,6] [2,4,6~ [3,4,5] []', 4, 5-] 
[L~,6-] [1,5,6] [2 ,~,~ [2,~,6] 
[2,3,7-] [3,4,6-] 
Vert.Cf. 15 Ori.: 60 Freq.: 1/7" 1~ 
(1,4, 6) (T,3, 5) (T,3, 6) (1,2,4) 
(T,2,5) (1,2,5) (1,2,4) (T, 3,6) 
(1,3,5) (1, 4,6) (1,3,6) (2,3,6) 
~, 5, 6] [2, 4, 5] [1,3, 4] [1,4, 5] 
[1,5,6] [2,4,6] [2,3,7-] [3,4,6-] 
Vert.Cf. 16 Ori.: 60 Freq.: 1/7- ~z 
(]', 4, 6) (i, 3, 5) (1, 3, 6) (1, 2, 4) 
(i, 2, 5) (]', 3, 6) (1, 3, 5) (1, 4, 6) 
(1,3,6) (2,3,6) 
~,5,6] [2,4, 51 IT, 4, 5--] [1,3,4] 
[1, 4, 5] [1, 5, 6] [2, 4", 5-] [2, 4, 6] 
[2,3,7--] [3,4,6--] 
Vert.Cf. 17 Ori.: 120 Freq.: 2/T 13 
(1,4,6) (1,3, 5) (1,3,6) (i,2,5) 
(1,3,6) (1,3,5) (1,3,6) (2,3,6) 
[5,5,6] ~, 4, 6--] ~,4,5] [1-, 4, 5-] 
[1, 2, 6-] [1,3,4] [1,4,5] [1,5,6] 
[2,4, 5-] [2, 4, 6] [2,3,7-] [3,4,6-] 

Vert.Cf. 18 Ori.: 20 Freq.: 2/7-1~ 
( i ,4,6) (T,3,6) (T,3,6) ( i ,3,5) 
(1,3,6) (2,3,6) 
~,5,6] [~,~,5] [~,4,6--] [~,4,s] 
[~,~,~ ff,~,~ ff,~,3-] [1,3,4] 
[1, 4, 5] [1, 5, 6] [2, 4, 5-] [2, 4, 6] 
[2,3,7 [3,4,6--] 
Vert.Cf. 19 Ori.: 60 Freq.: 2/7 -14 
(1, 4, 6) (1, 3, 5) (T,3, 6) (1,2, 5) 
(T, 3 , 6 ) ( T ,  3,5) 
~,5,6] [2,4,~ ~,4,5] [1, 4", 5-] 
[i, 5, 6-] I1,2, 3] [1,2, 6] [1, 3, 4] 
[1,4, 5] [1, 5, 6] [2, 4, 7-] [2, 4, 6] 
[2,3,5-] [3,4,6-] 
Vert.Cf. 20 Ori.: 30 Freq.: 1/7 -~ 
(1, 3,6) (1,3,5) 
~, 4, 6] [3, 5, 6] 
[~,4, s] ff ,~,~ 
if, ~, 3--] [1,2,3] 
[1,4, 5] [1, 5, 6] 
[2, 3, 5-'] [3,4,6-] 

~,5,5] ~ ,4 ,~  
~,5,4-] [i,~, 6-] 
[1, 2, 61 [1, 3, 4] 
[2,~, 5--] [2,~, 6] 

Vert.Cf. 21 Ori.: 60 Freq.: 2/r  la 
(1, 4, 6) (1, 3, 6) (1, 3, 6) (i, 3, 5) 
[~, 5, 6] [~,~, 5] 1~,4,6-7 [~, 4, 5] 
ff,~,7 [~,~,~ IT,3,~ [1,2,3] 
[1, 2, 61 [1,3, 4] [1,4, 5] [1, 5, 6] 
[2, 4, 5-'] [2, 4, 6] [2,3,5-'] [3,4,6-] 
Vert.Cf. 22 Ori.: 60 Freq.: 1/v 15 
(T,4,6) (i ,5,5) (1,3,6) (i ,3,4) 
(1,3,5) (1,3,6) (1,3,5) (1,4,6) 
~,5,6] [3,4,5] if,4, 5-] [1,2,3] 
[1, 2, 6] [1,3, 4] [1,4, 5] [1, 5, 6] 
[2, 4, 5--] [2,4,6] [2,3,7--] [3,4,6-] 
Vert.Cf. 23 Ori.: 12 Freq.: 1/7-12 
(1,4,6) (1,3, 5) (1,3,6) (1,2,4) 
(1,2, 5) (1, 2,5) (1, 2,4) (i, 3,6) 
(1, 3 , 5 ) ( i " ,  4, g) 
~, 5, 6] [2, 4, 5] [1,2, 3] [1,2, 6] 
[1,3,4] [1,4,5] [1,5,6] [2,4, 6] 
I2,3,7 [3,4,6--] 
Vert.Cf. 24 Ori.: 1 Freq.: 1/7- a 
[5,~,6] [5,5,6] f~,5,5] [~,4,~ 
~,4,5] [], 5, 6-] [], 4, 5-] [1,3,4-] 
[i,~,6-] [i,~,3-] [1,2,3] [1,2,6] 
[1,3,4] [1,4,5] [1,5,6] [2,~,7 
[2,4, 6] [2,3,7-] [3, 5, 6--] [3,4,6-] 

Stampfli vertices that either do not contain 2's or contain 
the sequences 22,24,26 , which are replaced by 4,42,43 , 
respectively. 

By omitting the rhombi in the Stampfli pattern 
(Baake, Klitzing & Schlottmann, 1992), we get the 
square-triangle pattern. It is worth mentioning because 
of its extreme simplicity and because it seems to be an 
adequate model for the dodecagonal phase of Ni-Cr. 
Here, k = 2 and S = {3,2}. The pattern has altogether 
four vertex configurations, all mirror symmetric; only 
one, 34 , is prohibited (see Fig. 8). 

Finally, we quote the shield pattern (Nissen, 1990) 
as an example for a case where different tiles have 
corners with the same angles. The tiles of this pattern 
are an equilateral triangle T, a square Sq and a 'shield' 

Sh with equal sides a. The latter is a semiregular 
hexagon with alternating angles of 37r/6 and 27r/6. In 
order to distinguish between the fight-angled corners of 
the square and the shield, we denote them as 3 and 
:3, respectively. Thus, we have for the shield pattern 
k = 4 and S = {5,3,3,2}. The shield pattern can be 
obtained from the GLMer-Niizeki pattern by replacing all 
vertex configurations of the type 231221 = 2(12)2(21)2 
by 23232 ~ 32232. This eliminates all rhombi in the 
perfect pattern. Consequently, the random version of 
the shield pattern contains no rhombi either. There are 
altogether 18 + 4 = 22 vertex configurations, which 
readers are urged to construct for themselves or pick 
out of the Stampfli list. The regular vertices are 5232, 
32232, 32232, 32232. 
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5. The primitive icosahedral tiling 

We come now to the main subject of this paper, namely 
the primitive icosahedral tiling - introduced indepen- 
dently by Kramer & Ned (1984) and Ammann (Mackay, 
1981a,b; Ammann, Griinbaum & Shephard, 1992) - 
which is fundamental to the understanding of all known 
genuinely three-dimensional quasicrystalline structures. 
The building blocks, alias tiles or bricks, of this tiling 
are the well known Ammann rhombohedra (see also 
Kowalewski, 1938): a fat (thick, prolate or large) one 
L and a skinny (thin, oblate or small) one S. They 
have identical rhombic faces with acute angle a = 
arctan2 ,2_ 63 ° 26' 06". The ratio of the large face 
diagonal to the small one is the golden mean -i- = 
(1 + 51/2)[2. Hence, it is also easy to see that the volumes 
of the two rhombohedra are in a ratio of "r. 

The solid angle at the acute comer around the three- 
fold axis of the fat tile L is 7r/5. Thus, the solid angles 
spanned by its other comers are 37r/5. Likewise, for the 
skinny tile S, the obtuse comer around the threefold axis 
spans a solid angle of 77r/5. Hence, at the remaining 
comers the solid angles are again 7r/5. We notice that 
there are two different kinds of comers with the same 
solid angle. To distinguish between them we attach to 

the acute comer of L the label 1 and to that of S the 
label i .  Thus, in our formalism we have the following. 
The (solid) angle unit is w = 47r/20 = 7r[5. The count is 
s = 20. The number of different comers is k = 4 and 
their set is S = 17,3,i,1 }. 

The perfect primitive icosahedral tiling contains 24 
different vertex configurations, of course, up to icosa- 
hedral symmetry. Of these, eight have different enan- 
tiomers so altogether there are 32. They are listed in 
Table 2 and represented in Figs. 9 and 10. 

Table 2 [adapted from Baake, Ben-Abraham, Kramer 
& Schlottmann (1990) and Ben-Abraham, Baake, 
Kramer & Schlottmann (1993)] shows the detailed 
codes of all perfect icosahedral vertices as well as 
their composition, symmetry multiplicity and frequency 
of occurrence in the ideal tiling. Fig. 9 shows these 
vertex configurations as constructed from the tiles 
represented by Schlegel diagrams. Fig. 10 shows them 
additionally in perspective projection. The representation 
of three-dimensional vertex configurations is discussed 
i n § 6 .  

In the random version of the primitive icosahedral 
tiling there are, up to icosahedral symmetry, 5450 dif- 
ferent vertices. Among these, 5077 have different enan- 
tiomers, so there are altogether 10527 noncongruent 

.~.~11%~:'~ ~- 
1 : i ' 1  \ @j, : 

"r ';" - 

'7" ~ ~" • ~ / ~ - 3  ~ 1 !J 0 

Fig. 9. The representation of the regular vertex configurations by Schlegel diagrams. 
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vertex configurations. Of these, 5090 (9876 if enan- 
tiomers are counted separately) are 'crystallographic', 
that is to say, they contain like files in adjacent parallel 
positions. Thus, there remain 360 (651) 'noncrystallo- 
graphic' vertex configurations, which, of course, include 
the 24 (32) perfect ones. 

The informal distinction between 'crystallographic' 
and 'noncrystallographic' vertices is quite useful, being 
obvious and intuitive; see also Ben-Abraham & Joseph 
(1993). On a formal level, it has been replaced by 
the classification according to rank and degree (Ben- 
Abraham, Baake, Kramer & Schlottmann, 1993). 

It is obviously impracticable, and also useless, to 
present a printed list of all icosahedral vertex configura- 
tions. We therefore confine ourselves to a recapitulation, 
in Table 3, of the vertices according to their summary 
formulae.* 

* Readers interested in the complete list for physical applications or 
any other good purpose are kindly requested to contact the authors. We 
will be glad to furnish the complete data in diskette form. The vertex list 
contains the full code, the symmetry and the multiplicity of each vertex. 

~ 

/' \ ',, / ",_ _~. 

Fig. 10. The regular vertex configurations in perspective projection. 

Table 3. Number of  isomeric vertex configurations of  the 
randomized primitive icosahedral tiling within each sum- 

mary partition S = 17,3,i,1 } 

[ Partition I # 1  I Partition I ~ ] 

To conclude this section, a few words are in order to 
explain how the vertex list was obtained. It is clearly im- 
practicable to do a complete search of this kind by hand. 
At the time when this search was started, in late 1984, 
no computer algorithm was available. Therefore, the 
original search was limited to the 'noncrystallographic' 
vertices. Since then, one of us (MS) has invented an 
efficient algorithm mainly for the present purpose. The 
interested reader will find a detailed discussion of this 
algorithm in § 7. 

6. Representation of three-dimensional 
vertex configurations 

To visualize a vertex configuration, it is certainly best to 
have a three-dimensional model. In practice, this is, of 
course, impossible, except perhaps for a few basic types. 
We have used a two-dimensional representation of vertex 
configurations by means of Schlegel diagrams (Schlegel, 
1883).* These are a linearization of the stereographic 
projection. An essentially equivalent method has been 
independently developed by Henley (1986). 

* This old reference is not readily accessible. For those who cannot get 
hold of it, Griinbaum (1969) (especially chs. 3 and 11.5) is recommended; 
the reference has been found therein. 
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Let us refer to Fig. 1 l(b), which is identical with Fig. 
5(c) of Schlegel (1883). Imagine sitting in the middle 
of a 20-star, that is to say, in the centre of a regular 
starred icosahedron. The nearest nodes one sees are the 
12 vertices of a regular (simple) icosahedron. Thus, one 
is surrounded by 20 identical equilateral triangles. Now, 
place one vertex, say A, of the icosahedron on a plane so 
that the fivefold axis through the vertex is perpendicular 
to the plane. Spread the triangles upon the plane, keeping 
them joined along the edges. One must, of course, 
deform the triangles, but one can still conserve the 
topology and the symmetry. However, the diametrically 
opposite vertex A' appears on the diagram as five distinct 
points. Also, the edges through A', such as A~B ~, appear 
twice and one must take that into account. To surmnarize: 
all triangles in the diagram (Fig. 11) are equivalent and 
represent the faces of a regular icosahedron. Hence, 
applied to a three-dimensional vertex such a triangle 
represents the comer 1. For clarity, different comers are 
distinguished by different (heraldic) colours. The choice 
of colours has, for the time being at least, no significance. 
It should be mentioned that in our diagrams some lines 
are drawn broken in order to show that they bisect a 
link between two comers. 

Of course, rotating a vertex around any symmetry axis 
will, generally speaking, change the appearance of the 
diagram without changing its content. One has to be 
aware of that. Looking at Fig. 11, one at once recognizes 
that a mirror axis of the pentagon, like the straight line 
WDAD'W, represents a mirror plane of the icosahedron. 
But the broken line BCMB~C'M~B (where M and M ~ are 
the midpoints of DF' and D~F, respectively) is equivalent 
to WDAD'A' and thus also represents a mirror plane. All 
aspects of mirror planes (up to rotations) are shown in 
Fig. 12. 

Now, let us replace a pair of adjacent l ' s  by a 
pair of adjacent l 's.  Take, for instance, the 1-1 pair 
(FBA, FBD'). Clearly, the replacement consists of eras- 
"rag the edge FB and drawing the edge AD' to create the 
1-1 pair (AIYB, AD'F). All aspects of i up to rotation 
are shown in Fig. 13. We leave it as an exercise for 
diligent readers to convince themselves (easily) that Figs. 

-1 

- 4  2 T 

- 5 ~  6 - ~  

3 I T T 

-6 4 5 2 ~  4 

-2 T 3 T 
(a) (b) 

Fig. 11. Double vector star, spanning an icosahedron, and its represen- 
tation as a Schlegel diagram. 

14 and 15, respectively, show the comers 3 and 7 in 
their aspects. 

In Henley's (1986) version, the triangles of the icosa- 
hedron are first projected onto a concentric sphere and 
the cap A~BICtDIEIF ~ is cut off and drawn separately 
besides the rest. Henley also shows in his diagrams the 
bond configuration around the vertex. That is to say, 
he shows the edges in the first coordination shell, as 
well as the short face diagonals and the short body 
diagonals of the thin bricks. Then he labels the vertices 
by their bond configurations. Unfortunately, however, 
it turns out that this labelling, while sufficient for his 
subset of vertices, is not unambiguous in general. Also, 
the bonds unnecessarily complicate the diagrams, and 
they can always be trivially reconstructed. 

It is now also easy to show in the diagrams the 
forbidden 'crystallographic' configurations (Fig. 16). 

No doubt many valid methods can be derived for 
coding, listing and storing the information on the con- 
figurations. We have experimented with quite a few and 
found it most expedient to apply the scheme of spanning 
vectors described in § 2. We use the double vector star 
-¢-eh (h -- 1, . . . ,6)abbreviated to 1 , . . . , 6 , i , . . . , 6  as 
shown in Fig. 11. 

Fig. 12. Aspects of mirror planes. 

Fig. 13. Aspects of i. The aspects of 1 are just the elementary triangles. 
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The fat tiles, L, are coded by square brackets [ ], the 
skinny ones, S, by round brackets ( ) .  Each bracket has 
three entries showing the vectors spanning the tile. The 
labels {7,3,1,1} of the corners entering the vertex are 
attached as subscripts to the bracket. Diligent readers 
should convince themselves that after a small amount 
of practice the translation between codes, Schlegel di- 
agrams, models and even reality becomes a matter of 
c o u r s e .  

7. Search algorithm for local configurations 

In the case of two-dimensional patterns, the enumer- 
ation of combinatorially possible vertex configurations 
can be achieved by a simple trial-and-error procedure 
that consists of successively adding tiles to partial ver- 
tex configurations in, for example, counterclockwise 
order until the full angle is completed or a mismatch 
occurs. Because the sphere is more complicated than 
the circle, things are not that simple in the case of 
three-dimensional patterns, e.g. the primitive icosahedral 
tiling. Here, we ran a computer program according to an 
algorithm that we now sketch briefly. 

Seen from the central vertex of a vertex configuration, 
there are 160 different possible positions of the two 
rhombohedral tiles in question (for brevity, we speak of 
160 different rhombohedra). Each of these rhombohedra 

Fig. 14. Aspects of 3. 

• ~ ~1  
r ~ I i  

A 
r r r  ~ "  " % .  

Fig. 15. Aspects of 7. 

occupies a certain well defined sector of the full solid 
angle around the central point; these sectors can be 
characterized as subsets of a set of 120 pairwise disjoint 
elementary sectors with solid angle 47r[ 120 each (in fact, 
each of these elementary sectors represents a fundamen- 
tal domain of the action of the icosahedral group). We 
enumerate the set of rhombohedra ( r l , . . .  ,r160) and 
the set of elementary sectors ( s l , . . . , s120) .  There is 
no problem in calculating a matrix of pairwise overlap 
between the rhombohedra and a matrix that indicates - 
for each rhombohedron - the set of elementary sectors 
it occupies; we assume in the following that these data 
are worked out explicitly as well as the action of the full 
icosahedral group on the ri. The combinatorial problem 
to solve now is the calculation of a list of all sets 
{ r i l , . . .  ,rik } with the property that every elementary 
sector is occupied by precisely one element r j  of them; 
of course, we do not want to count repeatedly such sets 
that are connected by an icosahedral transformation. 

The algorithm proceeds recursively. In the following, 
Pn denotes the partial vertex configuration achieved at 
recursion depth n, R,, the set of rhombohedra that are 
candidates for being added in the next step and S,, the set 
of elementary sectors not covered by P,,. Furthermore, 
L is the list of accepted vertex configurations. Now, the 
following steps are carried out. 

(0) Let L = O, P0 = 0, R0 = { r l , . . . ,  r160] and 
So = { S l , . . . ,  s120 }; set the recursion depth n = 0. 

(1) If S,, is not empty, then continue with (2). Oth- 
erwise, P,, is a complete vertex configuration. Let the 
icosahedral group act on it and compare the results with 
L. If P,, turns out to be essentially new, add it to L and 
continue with (4). 

(2) If Sn is not completely covered by the elements of 
R,, then continue with (4). Otherwise, increment n by 1. 

(3) Choose r to be the 'minimal '  element of Rn_ 1 
and remove it from R n_ 1; let P,  be the join of P n -  1 and 
{r I, R, be the set of those elements of R ,_  1 that do not 

Fig. 16. Forbidden 'crystallographic' configurations. 
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overlap with r and Sn be the set of those elements of 
an--1 not covered by r. Continue at (1). 

(4) If n> 0, decrease n by 1 and continue with (1). 
Otherwise, terminate the calculation. 

The crucial step of this procedure is (2). This book- 
keeping of the possibility of covering the full angle 
with the remaining rhombohedra allows sufficiently early 
recognition of dead ends. Without this facility, it might 
happen that there is a large provision of rhombohedra 
to be added to a partial configuration while a single 
elementary sector is already cornered in such a way that 
there is no chance to cover it. 

Obviously, this algorithm can be implemented in 
such a way that it is essentially independent of the 
special geometric features of the icosahedral pattern. We 
checked the results in the case of the triangle pattern by 
comparing them with the outcome of the simple-minded 
procedure mentioned at the beginning. 

8. Formal classification of local configurations 

For a generic set of tiles, out of all combinatorially 
possible local configurations only a small subset occurs 
in the corresponding perfect tiling. Hence, most configu- 
rations are defective in some sense. Intuition also tells us 
that some configurations are more defective than others. 
Clearly, a systematic classification is called for. 

The defectivity of vertex configurations in quasicrys- 
talline structures has already been dealt with from vari- 
ous points of view (Ben-Abraham, 1993). Here, we find 
it appropriate to apply the classification first introduced 
by Ben-Abraham, Baake, Kramer & Schlottmann (1993) 
and refined and extended by Ben-Abraham (1993). 

A configuration that occurs in the perfect tiling is 
called regular. A configuration that does not occur in 
the perfect tiling is defective. For each configuration one 
can define a non-negative function/z, called the measure 
ofdefectivity or simply defectivity (Ben-Abraham, 1993). 
By definition,/z = 0 for a regular configuration. Yet it 
does happen that a defective configuration has vanishing 
defectivity. Such a configuration turns out always to 
be nearly perfect. We classify all configurations with 
# = 0 as quasiregular. Those of them that are not 
regular are called singular. This term was not chosen 
by accident. The configurations in question are indeed 
limiting singular cases of defectivity (Ben-Abraham, 
Baake, Kramer & Schlottmann, 1993). A configuration 
that is not quasiregular, i.e. one that has nonvanishing 
defectivity, # ¢ 0, is called prohibited. Closer inspection 
of local configurations suggests a formal classification in 
terms of characteristic integers. 

The degree g (for 'gradus', say, to avoid confusion 
with d, often used for 'dimension') is defined only for 
defective vertices. It is the maximum dimension of a 
facet shared by such subconfigurations that does not 

occur in the ideal tiling. Consider, for example, the ideal 
primitive icosahedral tiling. A forbidden configuration of 
degree 2 would be one containing a pair of tiles that are 
translations of one another and share a face; in other 
words, two adjacent like tiles in parallel position. Up to 
now we have called such vertices 'crystallographic'. As 
we have seen earlier, the vast majority of the vertices 
in this tiling are of degree 2. Only 360 are of a lesser 
degree or are regular; these we have called 'noncrystal- 
lographic'. There are no configurations of degree 3 in 
our list; such a configuration would contain wrong tiles. 
One could perhaps include the regular vertices into this 
classification by defining their degree as -1 .  

We have introduced the rank r to distinguish between 
different cases of quasiregular configurations. The rank 
is defined as the dimension of the dual overlap. Obvi- 
ously, the regular configurations are those of rank 3. It is 
perhaps intuitively clear that the lower the rank the more 
a vertex deviates from regularity. The prohibited vertices 
may be included into the classification by definition of 
their rank as -1 .  

Beating in mind generalizations to more extended 
configurations, one is naturally led to define a third 
characteristic integer and call it order. Consider shells 
of tiles around some node of a tiling. These shells either 
are or are not complete. We confine our attention to 
configurations consisting of complete shells and call 
them, naturally, complete configurations. Now, the order 
of a complete configuration is the number of shells. 
More precisely, we define the order p (for 'poryadok', 
say, to avoid confusion with 'origin', zero etc.) of a 
configuration around a given node as the minimum 
number of links leading from the node to the surface. 

A vertex configuration is thus one of order 1. A point 
defect at a node, such as a vacancy or a foreign atom 
and, of course, the unperturbed node itself, becomes thus 
a configuration of order 0 and falls in place within our 
system. 

We notice that the concept of a configuration of order 
p is related to the concept of an R map (where R is 
continuous) or R patch (Levitov, 1988). 

9. Concluding remarks 

It goes without saying that the set of local configura- 
tions present in any given structure affects its physical 
properties. It is important whether a local configuration 
appears as an isolated defect or whether it is an organic 
part of a more extended object. One may ask meaningful 
questions about spontaneous or induced formation and 
transformations of such objects and their consequences. 
The present study, being confined to local configurations 
of order 1, i.e. vertices, and focusing on the primitive 
icosahedral structure, is but a modest first step. Future 
work should include the investigation of local configura- 
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dons of higher order and encompass more complicated 
structures as well. Obviously, the extent and complexity 
of such research will increase quite disproportionately. 
Nevertheless, it is expected to be a worthwhile and 
rewarding undertaking. 

The participation of one of us (SIBA) in this 
project was facilitated by the hospitality of the 
University of Tiibingen and financial support from the 
Deutsche Forschungsgemeinschaft; these are gratefully 
acknowledged. 

A P P E N D I X  

Table  4. Vertex configurations of the random triangular tiling 
Note that some files have the same angles but different edge lengths; therefore, some of  the formulae are not unique and are marked 

by an extra L or S. This means that at this place there is a large/small edge in between. 

Composition I # I Fo~m~a~ I Multiplicity 

{2,2 ,0 ,0} 1 3222 I0-I 

{ 2, i, 1,1 } 2 32211 10.2 
{2,0,4,0} 3 3214 I0.I 

4 312312 10-1 
{2 ,0 ,2 ,2}  5 321].21 10-1 

{1 ,3 ,1 ,0}  6 3231 10.2 
7 32212 10.2 

{1 ,2 ,2 ,1 }  8 322111 10-2 
9 321211 10.2 
10 3212 i2 10.2 
11 321212 10-2 
12 321121 10.2 
13 312211 10.2 

{ 1, 2, O, 3 } 14 32132 10.1 
{1 ,1 ,5 ,0}  15 3218 10-2 

16 3121`1 10.2 
17 312213 10.2 

{1 ,1 ,3 ,2}  18 3212121 10.2 
19 32].12 ].1 10.2 
20 32i 213 10.2 
21 3121121 10.2 
22 3122121 10.2 
23 31i2111 10.2 

{i , I , I ,4}  24 32i`11 10.2 
{1,0,6 ,1} 25 315il 10.2 

26 313113 10.1 

{1,0 ,4 ,3} 27 313131 10.2 
28 31112].21 10.2 

{1,0 ,2 ,5} 29 31151 10.1 
{0,4 ,2 ,0}  30 2`112L 10.1 

31 2`112S 10.1 
32 23121 10.2 
33 221221 10.1 

{0,4,0,2} 34 2`1i 2 10-1 
35 221221 10.1 

{0 ,3 ,3 ,1}  36 23131 10.2 
37 231211 10.2 
38 2212121 10.2 
39 2212111 10.2 

Composition I# l  Formula I Multiplicity 

' 4 0  2212iI 2 10.2 
41 221221i 10.2 
42 2212211 10.2 
43 22132i 10.2 
44 2121211 i0.2 
45 2121212 I0.2 

, 

{0 ,3 ,1 ,3}  231i 3 10.2 
2212i 3 10"2 
22i21]. 2 10"2 
22 i 12i 2 10-2 

{0 ,2 ,6 ,0}  2216L 10.1 
2216S I0.i  
2121 s 10.2 

212214L 10.1 
212214S 10.1 
213213 5-2 

{0 ,2 ,4 ,2}  56 221'ti 2 10.2 
57 2213121 10.2 
58 2212i12]. 10.2 
59 2212j.212 10.1 
60 22111211 I0.i  
61 2211`11 I0.I 
62 2121312 10.2 
63 21212i21 10.2 
64 2121112i 10.2 
65 212212i 2 10.2 
66 21221i21 10.1 
67 2122112]. 10.1 
68 2132117 I 10.2 

!69  214212 { I0.I 
70 213i21i i 10.2 
71 213i12i 10.2 
72 212121h 10.2 
73 21211211 10.2 

{0,2,2,4} 74 22121 ̀1 10.2 
75 221141 10.1 
76 22112i 3 10.2 
77 22 ].212i 2 10.1 
78 2121i 4 10.2 
79 21221 1̀ 10.1 
80 21i21J. 3 10.2 
81 21J.12i 3 10.1 

Composition { # [ Formula 

82 
83 
84 

{o,2,o,6} 85 

{0,1,7,1} 86 
87 
88 
89 

{o,i,5,3} 90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

{o,1,3,5} lOO 

101 
102 
lO3 
lO4 
105 

{0,1,1,7} 1o6 
{0,0, I0,0} 107 
{0,0,8,2} 108 

109 
110 

{o,o,6,4} 1111 
112 
113 
114 

{o,o,4,6} 115 
116 
117 
118 

{0 ,0 ,2 ,8}  119 
{0,0,0, i0} 120 

Multiplicity 

21122112 5.2 
21i212i 2 10.1 
2113121 10-1 

2216 10.1 

21ri 10.2 
216iI 10.2 
213il 2 10.2 
214113 10.2 

215i 3 10"2 
214131 10"2 

213J.12i 2 10.2 
21312121 10"2 
2131312 10-2 

212112121 10.2 
212i212il 10.2 

21].1412 10.2 
21112i121 10.2 
21i214i 10.2 
213]. s 10.2 
212131 10.2 
211121 ̀1 10.2 
21~.212 ~.3 10.2 
21131212 10-2 
21i`112]. 10-2 

21]. r 10-2 
1 '0 2.1 

1812 10.1 
16~.12i i 10.1 
1̀ 1 i1`11 5-1 

16i 4 10-1 
1`1i12i 3 
1`1i212i 2 10-1 

12i12i12i 2 10-1 
1̀ 1 i 6 10"1 

12i12i 5 I0.i  
1212121 ̀1 I0.I 
12i312i 3 

12i8 

i 1° 1"1 

10-2 

5.1 

10.1 

Fig. 17. One representative vertex figure. It shows in addition that they 
are all embeddable  into the perfect triangular tiling. The decagons are 
al lowed patches. The edges of  the vertex configuration define sectors 
inside the decagon and it is shown how they can be filled up. 

Fig. 18. One representative vertex figure. It shows in addition that they 
are all embeddable  into the perfect Stampfli tiling. The dodecagons are 
al lowed patches. The edges of  the vertex configuration define sectors 
inside the dodecagon and it is shown how they can be filled up. 
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Tab l e  5. Vertex configurations o f  the random Stampfli tiling 

Composition I # I F°rmula I Multiplicity 

{2,0, i,0} 1 522 12.1 
{2,0,0,2} 2 5212 12.1 

3 5151 6.1 
{ 1,2,0,1 } 4 5321 12.2 

5 5313 L 12.1 
{ 1,1, 2, 0 } 6 5322 ! 12.2 

7 5232 12.1 
{ 1,1,1, 2 } 8 53212 12.2 

9 53121 12.2 
10 53122 12.2 
11 52312 12-2 
12 52131 12.2 
13 51321 12-2 

{ 1,1, o, 4 } 14 5314 12.2 
15 51313 12.2 
16 512312 12.1 

{1,0,3,1} 17 5231 12.1 
18 52212 12.2 

, 

{1,0,2,3} 19 52213 12.2 
20 521212 12.2 
21 521221 12.2 
22 52132 12.1 
23 512212 12.2 
24 512121 12.1 

, 

{1,0,1,5} 25 5215 12-2 
26 51214 12.2 
27 512213 i 12.2 

{1,0,0,7} 28 517 12-1 
{0,4,0,0} 29 34 3.1 
{0,3,1,1} 30 3321 12.2 

31 32231 12.2 
{0,3,0,3} 32 3313 12.1 

33 321312 12.2 
34 313131, 4.1 ,, 

{0,2,3,0} 35 3223 12.1 
36 32322 12.1 

{0,2,2,2} 37 322212 12.2 
38 322121 12-2 

Composition [ # I Formula I Multiplicity 

39 322112 12-1 
40 321221 12-1 
41 323212 12.2 
42 323121 12.1 
43 322312 12.1 
44 322131 12.2 
45 321321 12.2 
46 321312 12.1 
47 321231 12-I 

{0,2,1,4} 48 32214 12.2 
49 321213 12-2 
50 3212212 12-1 
51 32314 12.1 
52 32131 ~ 12.2 
53 3212312 12.2 
54 321331 12-2 
55 3121231 12.2 
56 3121312 12.1 

{0,2,0,6} 57 3216 12-1 
58 31315 12-1 
59 312314 12.1 
60 313313 6-1 

{0,1,4,1} 61 3241 12.2 
62 32312 12.2 
63 322122 12.1 

{ O, 1,3,3 } 64 32313 12-2 
65 3221212 12-2 
66 3221221 12.2 
67 322132 12-2 
68 3212212 12-2 
69 3212121 12.2 
70 3212122 12.2 
71 3212221 12.2 
72 312312 12-2 
73 3122121 12.2 

{ O, 1, 2,5 } 74 32215 12-2 
75 321214 12-2 
76 3212213 12.2 
77 3213212 12.2 
78 321421 12.2 

C°mp°siti°n I # I Formula Multiplicity 

79 32132 12.1 
80 312214 12.2 
81 3121213 12-2 
82 31212212 12.2 
83 3121321 12.1 
84 3122213 12.2 
85 31221212 12.1 

{0,1,1,7} 86 ! 321 r 12-2 
87 31216 12-2 
88 312215 12-2 
89 313214 12-2 

{0,1,0,9} 90 319 12-1 
{0,0,6,0} 91 26 2.1 
{0,0,5,2} 92 2512 12-1 

93 24121 12-1 
94 231221 12.1 

{0,0,4,4 } 95 2414 12.1 
96 231213 12-2 
97 2312212 12.1 
98 2212213 12.1 
99 22121212 12.2 
100 22121221 12.1 
101 22122212 6.1 
102 21212121 3.1 

{0,0,3,6} 103 2316 12-1 
104 221215 12.2 
105 2212214 12.2 
I06 2213213 12-1 
107 2121214 12.1 
108 21212213 12.2 
109 212212212 4.1 

{0,0,2,8} 110 221 s 12-1 
i i i  21217 12.1 
I12 212216 12-I 
113 213215 12-1 
114 214214 6-1 

{0,0,1,10} 115 21 '0 12.1 

{0,0,0,12} 116 1 '2 I.i 
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Convergent-Beam Electron Diffraction Study of Incommensurately Modulated Crystals. II. 
(3 + 1)-Dimensional Space Groups 
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Abstract 
The convergent-beam electron diffraction (CBED) 
method for determining three-dimensional space 
groups is extended to the determination of the 
(3+l)-dimensional  space groups for one-dimen- 
sional incommensurately modulated crystals. It is 
clarified than an approximate dynamical extinction 
line appears in the CBED discs of the reflections 
caused by an incommensurate modulation. The 
extinction enables the space-group determination of 
the (3+l) -d imensional  crystals or the one- 
dimensional incommensurately modulated crystals. 
An example of  the dynamical extinction line is 
shown using an incommensurately modulated crystal 
of Sr2Nb207. Tables of the dynamical extinction lines 

* Present address: NEC Corporation, Minamihashimoto 3-1-35, 
Sagamihara, Kanagawa 229, Japan. 
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appearing in CBED patterns are given for all the 
(3 + 1)-dimensional space groups of the incommen- 
surately modulated crystal. 

1. Introduction 
The space groups of three-dimensional crystals can 
be determined by the convergent-beam electron dif- 
fraction (CBED) method. The method is based on 
dynamical extinction, which permits an unambigu- 
ous identification of  21 screw axes and glide planes. 
The dynamical extinction effect in electron diffrac- 
tion at a symmetrical incidence was discussed theo- 
retically by Cowley & Moodie (1959), Miyake, 
Takagi & Fujimoto (1960) and Cowley, Moodie, 
Miyake, Takagi & Fujimoto (1961). Goodman & 
Lehmpfuhl (1964) first observed the dynamical 
extinction as dark cross bands or lines in kine- 
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